25. On Certain Real Quadratic Fields with Class Number 2

By Shigeru KATAYAMA

College of General Education, Tokushima Bunri University (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1991)

Let *D* be a square-free rational integer and $\varepsilon_D = (t+u\sqrt{D})/2$ (t, u>0)be the fundamental unit of $Q(\sqrt{D})$ with $N \varepsilon_D = -1$, where *N* is the norm map from $Q(\sqrt{D})$ to *Q*. Then *D* is expressed in the form $D=u^2n^2\pm 2an+b$, where *n*, *a* and *b* are integers such that $n\ge 0$, $0\le a < u^2/2$ and $a^2+4=bu^2$ (cf. [6]). We denote by h(D) the class number of $Q(\sqrt{D})$. In our previous paper [1], we treated the problem of enumerating the real quadratic fields $Q(\sqrt{D})$ with h(D)=1 and $1\le u\le 300$ (the cases u=1 and u=2were treated in [3]).

In this paper, we shall consider the same problem for real quadratic fields $Q(\sqrt{D})$ with h(D)=2 and $1 \le u \le 200$.

We note here that the list in [4] is incomplete as it misses $Q(\sqrt{3365})$ whereas h(3365)=2.

In the same way as in [1], we have the following theorem.

Theorem. With the notation as above, there exist 45 real quadratic fields $Q(\sqrt{D})$ with class number two for $1 \leq u \leq 200$, where D are those in table with one possible exception.

Proof. Let d be the discriminant of $Q(\sqrt{D})$, that is, d=D or 4D, according as $D\equiv 1 \pmod{4}$ or not. Let χ_d be the Kronecker character belonging to $Q(\sqrt{D})$ with the discriminant d and $L(s,\chi_d)$ be the corresponding L-series. Then by Theorem 2 of [5], we have for any $y \geq 11.2$ satisfying $e^{y} \leq d$

$$L(1, \chi_d) > \frac{0.655}{y} d^{-1/y}$$

with one possible exception of d.

Hence from class-number formula, we have

$$h(D) = \frac{\sqrt{d}}{2\log \varepsilon_D} L(1, \chi_d) > \frac{0.655}{y} \frac{\sqrt{d} d^{-1/y}}{2\log (u\sqrt{d})}$$
$$\geq \frac{0.655 e^{(y/2)-1}}{y(y+2\log u)}.$$

Put for convenience

$$g(\log u, y) = \frac{0.655 e^{(y/2)-1}}{y(y+2\log u)}.$$

Then $g(\log u, y)$ is a monotone increasing function for $y \ge 11.2$. Therefore for any fixed u, there exists a real number c = c(u) such that $c \ge 11.2$ and $g(\log u, c) > 2$. We can take $15.1 \le c(u) \le 16.5$ for $1 \le u \le 200$. On the other hand, by the genus theory of quadratic fields, h(D) = 2 implies $D = p_1 p_2$, where p_1, p_2 are both prime such that $p_1 < p_2$.

Further, let q be the least prime q such that (D/q)=1. Then it is known that $h(D) \ge (\log n)/(\log q)$ (cf. [6]). Therefore if h(D)=2, then $q^2 \ge n$ holds.

Hence we searched for the integers $D = u^2 n^2 \pm 2an + b$ such that $D \leq e^{c(u)}$ and $D = p_1 p_2$ and $q^2 \geq n$, and calculated the class number of $Q(\sqrt{D})$ by the help of a computer. Q.E.D.

Details of the proof and the tables of u, D, n, q, and h(D) will be published elsewhere.

Acknowledgement. The author would like to express his thanks to Dr. Shin-ichi Katayama for useful suggestions.

(u ,	D)	(u ,	<i>D</i>)	(u,	<i>D</i>)	(u,	<i>D</i>)	(<i>u</i> ,	D)
(1,	85)	(2,	10)	(5,	493)	(13,	565)	(26,	58)
(1,	365)	(2,	26)	(5,	1037)	(13,	6437)	(26,	2173)
(1,	533)	(2,	65)	(5,	1781)	(17,	2165)	(26,	3293)
(1,	629)	(2,	122)	(5,	2285)	(17,	3077)	(29,	685)
(1,	965)	(2,	362)	(5,	3869)	(17,	6485)	(34,	218)
(1,	1685)	(2,	485)	(5,	5213)	(25,	1565)	(50,	314)
(1,	1853)	(2,	1157)	(10,	74)	(25,	3653)	(53,	1165)
(1,	2813)	(2,	2117)	(10,	185)	(25,	8021)	(53,	5165)
		(2,	3365)	(10,	458)			(73,	8885)
				(10,	5837)			(101,	12365)

References

- S.-I. Katayama and S.-G. Katayama: A note on the problem of Yokoi. Proc. Japan Acad., 67A, 26-28 (1991).
- [2] Y. Kida: UBASIC86. Nihonhyoronsha, Tokyo (1989).
- [3] H. K. Kim, M.-G. Leu and T. Ono: On two conjectures on real quadratic fields. Proc. Japan Acad., 63A, 222-224 (1987).
- [4] M.-G. Leu: On a determination of certain real quadratic fields of class number two. J. Number Theory, 33, 101-106 (1989).
- [5] T. Tatuzawa: On a theorem of Siegel. Japanese J. Math., 21, 163-178 (1951).
- [6] H. Yokoi: Some relations among new invariants of prime number p congruent to 1 mod 4. Adv. Studies in Pure Math., 13, 493-501 (1988).

100