25. On Certain Real Quadratic Fields with Class Number 2

By Shigeru Katayama
College of General Education, Tokushima Bunri University
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1991)

Let D be a square-free rational integer and $\varepsilon_{D}=(t+u \sqrt{D}) / 2(t, u>0)$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{D})$ with $N \varepsilon_{D}=-1$, where N is the norm map from $\boldsymbol{Q}(\sqrt{D})$ to \boldsymbol{Q}. Then D is expressed in the form $D=u^{2} n^{2} \pm 2 a n+b$, where n, a and b are integers such that $n \geqq 0,0 \leqq a<u^{2} / 2$ and $a^{2}+4=b u^{2}$ (cf. [6]). We denote by $h(D)$ the class number of $\boldsymbol{Q}(\sqrt{D})$. In our previous paper [1], we treated the problem of enumerating the real quadratic fields $\boldsymbol{Q}(\sqrt{D})$ with $h(D)=1$ and $1 \leqq u \leqq 300$ (the cases $u=1$ and $u=2$ were treated in [3]).

In this paper, we shall consider the same problem for real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{D})$ with $h(D)=2$ and $1 \leqq u \leqq 200$.

We note here that the list in [4] is incomplete as it misses $\boldsymbol{Q}(\sqrt{3365})$ whereas $h(3365)=2$.

In the same way as in [1], we have the following theorem.
Theorem. With the notation as above, there exist 45 real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{D})$ with class number two for $1 \leqq u \leqq 200$, where D are those in table with one possible exception.

Proof. Let d be the discriminant of $\boldsymbol{Q}(\sqrt{ } \bar{D})$, that is, $d=D$ or $4 D$, according as $D \equiv 1(\bmod 4)$ or not. Let χ_{d} be the Kronecker character belonging to $\boldsymbol{Q}(\sqrt{ } \bar{D})$ with the discriminant d and $L\left(s, \chi_{d}\right)$ be the corresponding L-series. Then by Theorem 2 of [5], we have for any $y \geqq 11.2$ satisfying $e^{y} \leqq d$

$$
L\left(1, \chi_{d}\right)>\frac{0.655}{y} d^{-1 / y}
$$

with one possible exception of d.
Hence from class-number formula, we have

$$
\begin{aligned}
h(D) & =\frac{\sqrt{d}}{2 \log \varepsilon_{D}} L\left(1, \chi_{d}\right)>\frac{0.655}{y} \frac{\sqrt{d} d^{-1 / y}}{2 \log (u \sqrt{d})} \\
& \geqq \frac{0.655 e^{(y / 2)-1}}{y(y+2 \log u)} .
\end{aligned}
$$

Put for convenience

$$
g(\log u, y)=\frac{0.655 e^{(y / 2)-1}}{y(y+2 \log u)} .
$$

Then $g(\log u, y)$ is a monotone increasing function for $y \geqq 11.2$. Therefore for any fixed u, there exists a real number $c=c(u)$ such that $c \geqq 11.2$
and $g(\log u, c)>2$. We can take $15.1 \leqq c(u) \leqq 16.5$ for $1 \leqq u \leqq 200$. On the other hand, by the genus theory of quadratic fields, $h(D)=2$ implies $D=p_{1} p_{2}$, where p_{1}, p_{2} are both prime such that $p_{1}<p_{2}$.

Further, let q be the least prime q such that $(D / q)=1$. Then it is known that $h(D) \geqq(\log n) /(\log q)(c f .[6])$. Therefore if $h(D)=2$, then $q^{2} \geqq n$ holds.

Hence we searched for the integers $D=u^{2} n^{2} \pm 2 a n+b$ such that $D \leqq e^{c(u)}$ and $D=p_{1} p_{2}$ and $q^{2} \geq n$, and calculated the class number of $\boldsymbol{Q}(\sqrt{D})$ by the help of a computer.
Q.E.D.

Details of the proof and the tables of u, D, n, q, and $h(D)$ will be published elsewhere.

Acknowledgement. The author would like to express his thanks to Dr. Shin-ichi Katayama for useful suggestions.

Table

$(u$,	$D)$								
$(1$,	$85)$	$(2$,	$10)$	$(5$,	$493)$	$(13$,	$565)$	$(26$,	$58)$
$(1$,	$365)$	$(2$,	$26)$	$(5$,	$1037)$	$(13$,	$6437)$	$(26$,	$2173)$
$(1$,	$533)$	$(2$,	$65)$	$(5$,	$1781)$	$(17$,	$2165)$	$(26$,	$3293)$
$(1$,	$629)$	$(2$,	$122)$	$(5$,	$2285)$	$(17$,	$3077)$	$(29$,	$685)$
$(1$,	$965)$	$(2$,	$362)$	$(5$,	$3869)$	$(17$,	$6485)$	$(34$,	$218)$
$(1$,	$1685)$	$(2$,	$485)$	$(5$,	$5213)$	$(25$,	$1565)$	$(50$,	$314)$
$(1$,	$1853)$	$(2$,	$1157)$	$(10$,	$74)$	$(25$,	$3653)$	$(53$,	$1165)$
$(1$,	$2813)$	$(2$,	$2117)$	$(10$,	$185)$	$(25$,	$8021)$	$(53$,	$5165)$
	$(2$,	$3365)$	$(10$,	$458)$			$(73$,	$8885)$	
			$(10$,	$5837)$			$(101$,	$12365)$	

References

[1] S.-I. Katayama and S.-G. Katayama: A note on the problem of Yokoi. Proc. Japan Acad., 67A, 26-28 (1991).
[2] Y. Kida: UBASIC86. Nihonhyoronsha, Tokyo (1989).
[3] H. K. Kim, M.-G. Leu and T. Ono: On two conjectures on real quadratic fields. Proc. Japan Acad., 63A, 222-224 (1987).
[4] M.-G. Leu: On a determination of certain real quadratic fields of class number two. J. Number Theory, 33, 101-106 (1989).
[5] T. Tatuzawa: On a theorem of Siegel. Japanese J. Math., 21, 163-178 (1951).
[6] H. Yokoi: Some relations among new invariants of prime number p congruent to 1 mod 4. Adv. Studies in Pure Math., 13, 493-501 (1988).

