24. Spherical Functions on Some p-adic Classical Groups

By Yasuhiro Kajima
Department of Mathematics, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1991)

Introduction. We write down explicitly the so called Satake transform of Hecke algebra of some p-adic classical groups (O) with $n \neq 2 \nu,(S p)$, $(U),\left(U^{+}\right),\left(U^{-}\right)$, using Macdonald's idea for the p-adic Chevalley groups ([2]). For our purpose, we have only to evaluate zonal spherical functions (in §2) and the number of double cosets by the maximal compact subgroup K (in §3). The details containing the case (O) with $n=2 \nu$ will be published elsewhere.
§ 1. Preliminaries. Let k be a p-adic field where ${ }_{p}$ does not lie over 2. Let k^{\prime} be either k itself, a quadratic extension of k or the (unique) central division quaternion algebra over k. \mathcal{O} denotes the maximal order of k^{\prime}. We denote by e the ramification index of k^{\prime} / k, and $\mathscr{P}=(\Pi)$ (resp. $p=(\pi)$) the prime ideal in k^{\prime} (resp. k). We denote by $x \rightarrow \bar{x}\left(x \in k^{\prime}\right)$ the canonical involution. Let ε be an element of the center of k^{\prime} such that $\varepsilon \bar{\varepsilon}=1, V$ a right vector space over k^{\prime} of dimension n, and \langle,$\rangle a non-degenerate \varepsilon$ hermitian form on V, i.e., a k-bilinear mapping $V \times V \rightarrow k^{\prime}$ such that

$$
\langle x, y\rangle=\varepsilon\left\langle\overline{y, x}, \quad\langle x a, y b\rangle=\bar{a}\langle x, y\rangle b \quad \text { foy all } x, y \in V, a, b \in k^{\prime} .\right.
$$

It is known that we have the following five cases.
(O) $\quad k^{\prime}=k$ and $\varepsilon=1$.
(Sp) $\quad k^{\prime}=k$ and $\varepsilon=-1$.
(U) $\quad k^{\prime}$ is a quadratic extension of k and $\varepsilon=1$.
$\left(U^{+}\right) \quad k^{\prime}$ is a division quaternion algebra over k and $\varepsilon=1$.
(U^{-}) k^{\prime} is a division quaternion algebra over k and $\varepsilon=-1$.
Now, let ν be the Witt index of V and put $n=n_{0}+2 \nu$. There exists a (not uniquely determined) system of vectors $\left\{e_{i}, e_{i}^{\prime}(1 \leq i \leq \nu)\right\}$ such that

$$
\left\langle e_{i}, e_{j}\right\rangle=\left\langle e_{i}^{\prime}, e_{j}^{\prime}\right\rangle=0, \quad\left\langle e_{i}, e_{j}^{\prime}\right\rangle=\delta_{i j} \quad \text { for all } i, j,
$$

($\delta_{i j}$ is Kronecker's symbol). Set

$$
V_{0}=\left(\Sigma e_{i} k^{\prime}+\Sigma e_{i}^{\prime} k^{\prime}\right)^{\perp}, \quad L_{0}=\left\{x \in V_{0} \mid\langle x, x\rangle \in \mathcal{O}\right\}, \quad L=\Sigma e_{i} \mathcal{O}+\Sigma e_{i}^{\prime} \mathcal{O}+L_{0} .
$$

Then L is a maximal lattice and there is a system of vectors $\left\{f_{i}\left(1 \leq i \leq n_{0}\right)\right\}$ such that

$$
L_{0}=\Sigma f_{i} \mathcal{O}, \quad\left\langle f_{i}, f_{j}\right\rangle=0, \quad \text { if } i \neq j
$$

We define α (resp. β) to be the number of $\left\{f_{i}\right\}$ such that $\left\langle f_{i}, f_{i}\right\rangle \in \mathcal{O}^{\times}$(resp. $\left\langle f_{i}, f_{i}\right\rangle \in \mathscr{P}$). Note that $\alpha+\beta=n_{0}$.

We now take this basis $\left\{e_{1}, \cdots, e_{\nu}, f_{1}, \cdots, f_{n_{0}}, e_{\nu}^{\prime}, \cdots, e_{1}^{\prime}\right\}$ and identify a k^{\prime}-linear transformation g of V with a matrix $\left(g_{i j}\right)$ by

$$
g:\left(e_{1}, \cdots, e_{1}^{\prime}\right) \rightarrow\left(e_{1}, \cdots, e_{1}^{\prime}\right)\left(g_{i j}\right)
$$

Let G be the connected component of the group of similitudes of V, that is
$\tilde{G}=\left\{g \in G L(V) \mid\langle g x, g y\rangle=\mu(g)\langle x, y\rangle\right.$ for all $x, y \in V$ and $\left.\mu(g) \in k^{\times}\right\} ;$
here we call $\mu(g)$ the multiplier of g.
As in [3] we set

$$
K=\{k \in G \mid k L=L\}=\left\{k \in G \mid k, k^{-1} \in G L(n, \mathcal{O})\right\},
$$

let G_{0} be the group of similitudes of V_{0}, μ_{0} the multiplier function of G_{0} and lastly

$$
N=\left\{n=\left[\begin{array}{c|c|c}
A & 0 & 0 \\
\hline * & { }^{I} n_{0} & 0 \\
\hline * & * & B
\end{array}\right] \in G\right\},
$$

where $A, B\left(\in G L\left(\nu, k^{\prime}\right)\right)$ are lower triangular matrix with their diagonal elements equal to 1 . Notice that K is a maximal compact subgroup corresponding to the maximal lattice L. We define the symbol [2] and e_{0} by

$$
[2]=\left[\begin{array}{ll}
1 & \text { if } n_{0}=0, \\
2 & \text { if } n_{0}>0,
\end{array} \quad \operatorname{ord}_{p} \mu_{0}\left(G_{0}\right)=\frac{[2]}{e_{0}} Z .\right.
$$

Now we set $M=(1 / e) Z^{\nu} \times\left(1 / e_{0}\right) Z$, and for $(m)=\left(m_{1} / e, \cdots, m_{\nu} / e, m_{0} / e_{0}\right) \in M$, we define $\Pi^{(m)}$ as follows:

$$
\Pi^{(m)}=\left[\begin{array}{l}
\operatorname{diag}\left(\Pi^{m_{1}}, \cdots, \Pi^{m_{\nu}}, \pi^{m_{0}} \bar{\Pi}^{-m_{\nu}}, \cdots, \pi^{m_{0}} \bar{\Pi}^{-m_{1}}\right) \quad \text { if } n_{0}=0, \\
\operatorname{diag}\left(\Pi^{m_{1}}, \cdots, \Pi^{m_{\nu}}, w^{m_{0}}, \mu_{0}(w)^{m_{0}} \bar{\Pi}^{-m_{\nu}}, \cdots, \mu_{0}(w)^{m_{0}} \bar{\Pi}^{-m_{1}}\right) \quad \text { if } n_{0}>0,
\end{array}\right.
$$

where w denotes an arbitralily fixed element of G_{0} such that $\operatorname{ord}_{p} \mu_{0}(w)=$ $2 / e_{0}$. We denote by D a subgroup in G generated by $\Pi^{(m)}$ with $(m) \in M$. It is known ([3]) that
$G=K D K=K D N$ (Cartan decomposition and Iwasawa decomposition). Now we can define zonal spherical functions on G relative to K. For $x \in G$, it is given by

$$
\omega_{s}\left(x^{-1}\right)=\int_{K} \phi_{s}(x k) d k,
$$

where $\phi_{s}(x)=s(d) \delta^{1 / 2}(d)$ for $x=k d n$ (Iwasawa decomposition), s is a character of the group D, δ is a function of D defined by $d\left(d n d^{-1}\right) / d(n)=\delta^{-1}(d)$, and the Haar measure $d k$ is normalized by

$$
\int_{K} d k=1
$$

As $\omega_{s}(x)$ is constant on each coset $K x K$, we will henceforce suppose $x \in D$. We use some notions of Lie algebras i.e., root system and of Weyl group.

In a ν-dimentional vector space over R with the standard basis $\varepsilon_{1}, \cdots, \varepsilon_{\nu}$, the root system Σ_{0} (resp. positive root Σ^{+}) is given as follows:

$$
\begin{aligned}
& \Sigma_{0}=\left[\begin{array}{l}
\left(C_{\nu}\right)=\left\{ \pm 2 \varepsilon_{i}, \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i, j \leq \nu, i \neq j\right\} \text { for }(S p), \\
\left(B_{\nu}\right)=\left\{ \pm \varepsilon_{i}, \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i, j \leq \nu, i \neq j\right\} \text { for }(O), \\
\left(B C_{\nu}\right)=\left\{ \pm \varepsilon_{i}, \pm 2 \varepsilon_{i}, \pm \varepsilon_{i} \varepsilon_{j} \mid 1 \leq i, j \leq \nu, i \neq j\right\} \text { for (U), }\left(U^{+}\right),\left(U^{-}\right), \\
\left(\text {resp. } \Sigma^{+}=\left[\begin{array}{l}
\left(C_{\nu}\right)=\left\{2 \varepsilon_{i}, \varepsilon_{j}+\varepsilon_{k}, \varepsilon_{j}-\varepsilon_{k} \mid 1 \leq i \leq \nu, 1 \leq j<k \leq \nu\right\} \\
\left(B_{\nu}\right)=\left\{\varepsilon_{i}, \varepsilon_{j}+\varepsilon_{k}, \varepsilon_{j}-\varepsilon_{k} \mid 1 \leq i \leq \nu, 1 \leq j<k \leq \nu\right\} \\
\left(B C_{\nu}\right)=\left\{\varepsilon_{i}, 2 \varepsilon_{i}, \varepsilon_{j}+\varepsilon_{k}, \varepsilon_{j}-\varepsilon_{k} \mid 1 \leq i \leq \nu, 1 \leq j<k \leq \nu\right\}
\end{array}\right)\right.
\end{array}\right.
\end{aligned}
$$

Moreover the simple roots of the root systems are $\left\{2 \varepsilon_{\nu}, \varepsilon_{i}-\varepsilon_{i+1}(1 \leq i \leq \nu-1)\right\}$ for (Sp), $\left\{\varepsilon_{\nu}, \varepsilon_{i}-\varepsilon_{i+1}(1 \leq i \leq \nu-1)\right\}$ for (O), $(U),\left(U^{+}\right)$and ($\left.U^{-}\right)$. The Weyl group W (operating on M) is generated by all permutations of ($m_{1}, \cdots, m_{\imath}$)
and by the automorphisms $w^{(i)}(1 \leq i \leq \nu)$ defined by

$$
w^{(i)}=\left\{\begin{array}{l}
m_{i} \rightarrow-m_{i}+[2] \frac{e}{e_{0}} m_{0}, \\
m_{j} \rightarrow m_{j} \quad(j \neq i)
\end{array}\right.
$$

Now we can see any permutation $\left(m_{1}, \cdots, m_{\nu}\right) \rightarrow\left(m_{p(1)}, \cdots, m_{p(\nu)}\right)$ operates on Σ_{0} by transforming ε_{i} to $\varepsilon_{p(i)}$ in Σ_{0} for all i. Moreover for each i we can see $w^{(i)}$ operates on Σ_{0} by transforming ε_{i} to $-\varepsilon_{i}$ and fixing all $\varepsilon_{j}(j \neq i)$.

We denote this operation of W in Σ_{0} by $w(a)$ (or simply $w a$) for $a \in \Sigma_{0}$, $w \in W$. It is easy to see that there is an element w_{a} of W corresponding to any simple root $a \in \Sigma^{+}$such that $w_{a}(a)=-a$ and $w_{a}\left(\Sigma^{+} \backslash\{a, 2 a\}\right)=\Sigma^{+} \backslash\{a, 2 a\}$ (if $a, 2 a \in \Sigma^{+}$, then $w_{a}=w_{2 a}$).

We call these w_{a} simple reflections. We can consider that W operates on D canonically. Now let $w=w_{1} \cdots w_{r} \in W$ be a "reduced" word where w_{i} 's are simple reflections, that is to say, w is not a product of r^{\prime} simple reflections for $r^{\prime}<r$. We denote r by $l(w)$.
§2. Zonal spherical functions. For a character s of D, we define $C_{0}\left(\varepsilon_{\nu}, s\right) \cdot C_{0}\left(2 \varepsilon_{\imath}, s\right)$ and $C_{0}\left(\varepsilon_{i}-\varepsilon_{i+1}, s\right)$ for $(U),\left(U^{+}\right),\left(U^{-}\right)$, and $C_{0}(a, s)$ for simple roots a for (O), $(S p)$ as follows:
i) Setting $\Pi_{i}=\operatorname{diag}(\underbrace{1, \cdots, 1}_{i-1}, \Pi, \Pi^{-1}, 1, \cdots, 1, \bar{\Pi}, \bar{\Pi}^{-1}, \underbrace{1, \cdots, 1}_{i-1}) \in D$,

$$
C_{0}\left(\varepsilon_{i}-\varepsilon_{i+1}, s\right)=\frac{q-S}{q-q S}, \quad \text { with } q=|\mathcal{O} / \mathscr{P}|, S=s\left(\Pi_{i}\right), 1 \leq i \leq \nu-1
$$

ii) Setting $\Pi_{\nu}=\operatorname{diag}(\underbrace{1, \cdots, 1}_{\nu-1}, \Pi, 1, \cdots, 1, \bar{\Pi}^{-1}, \underbrace{1, \cdots, 1}_{\nu-1}) \in D$,

$$
\begin{aligned}
& C_{0}\left(2 \varepsilon_{\nu}, s\right)=1+\frac{T}{1-S^{2}} \quad \text { for }(S p), \quad C_{0}\left(\varepsilon_{\nu}, s\right)=1+\frac{T^{\prime}}{1-S^{2}} \quad \text { for }(O), \\
& C_{0}\left(\varepsilon_{\nu}, s\right) C_{0}\left(\varepsilon_{\nu}, s\right)=1+\frac{T^{\prime \prime}}{1-S^{2}} \quad \text { for }(U),\left(U^{+}\right),\left(U^{-}\right),
\end{aligned}
$$

with $q=|\mathcal{O}| \mathscr{P} \mid, S=s\left(\Pi_{\nu}\right)$, where T, T^{\prime} and $T^{\prime \prime}$ are defined as follows:

$$
\begin{aligned}
& T=\frac{\left(q^{\beta}-1\right)}{q^{(\alpha+\beta) / 2}} S+\frac{q^{\beta}\left(q^{\alpha}-1\right)}{q^{(\alpha+\beta)}} S^{2} \text { for }(O), \quad T^{\prime}=(1+S) S\left(1-\frac{1}{q}\right) \text { for }(S p) \text { and } \\
& T^{\prime \prime}= \begin{cases}\frac{\left(q^{\beta+1 / 2}-1\right)}{q^{(\alpha+\beta+1) / 2}} S+\frac{q^{\beta+1 / 2}\left(q^{\alpha+1 / 2}-1\right)}{q^{(\alpha+\beta+1)}} S^{2} \quad \text { for }(U) \text { with } e=1, \\
\frac{q-1}{q^{(\alpha+1) / 2}} S+\frac{q\left(q^{\alpha}-1\right)}{q^{(\alpha+1)}} S^{2} \quad \text { for }(U) \quad \text { with } e=2, \\
\frac{q-1}{q^{(\alpha+3 / 2) / 2}} S+\frac{q\left(q^{(1 / 2+\alpha)}-1\right)}{q^{(\alpha+3 / 2)}} S^{2} \quad \text { for }\left(U^{+}\right), \quad \text { and } \\
\frac{q^{\beta}-1}{q^{(1 / 2+\alpha+\beta) / 2}} S+\frac{q^{\beta}\left(q^{(1 / 2+\alpha)}-1\right)}{q^{(1 / 2+\alpha+\beta)}} S^{2} \quad \text { for }\left(U^{-}\right) .\end{cases}
\end{aligned}
$$

And for other roots $a \in \Sigma^{+}$, we define $C_{0}(a, s)$ by the property $C_{0}(a, s)=$ $C_{0}(w a, w s)$ for all $w \in W$. Moreover we set $C(s)=\prod_{a \in \Sigma+} C_{0}(a, s)$ and $(w s)(x)$ $=s\left(w^{-1} x w\right)$ with $x \in D$.

The explicit formula of zonal spherical functions is given as follows:

Theorem 1. (The formula for spherical functions.) If the denominator of the rational function $C_{0}(a, s)$ in q does not vanish, then the spherical function is given as follows:

$$
\omega_{s}\left(x^{-1}\right)=\kappa \cdot \delta^{1 / 2}(x) \sum_{w \in W} C\left(w s^{-1}\right) \cdot(w s)(x) .
$$

for

$$
x=\Pi^{(m)}, \quad(m)=\left(\frac{m_{1}}{e}, \cdots, \frac{m_{\nu}}{e}, \frac{m_{0}}{e_{0}}\right) \quad \text { with } m_{1} \geq \cdots \geq m_{\nu} \geq \frac{[2] e}{2 e_{0}} m_{0}
$$

Here κ is some constant which is evaluated by substituting $s=\delta^{-1 / 2}$.
§3. Calculation of $[K \boldsymbol{x} K: K]$ for $\boldsymbol{x} \in \boldsymbol{D}$. We can write x as $x=\Pi^{(m)}, \quad(m)=\left(\frac{m_{1}}{e}, \cdots, \frac{m_{\nu}}{e}, \frac{m_{0}}{e}\right) \quad$ with $m_{1} \geq \cdots \geq m_{\nu} \geq \frac{[2] e}{2 e_{0}} m_{0}$.
Let W_{x} be the subgroup of W consisting of all w such that $w^{-1} x w=x$, and define $l^{\prime}(w)$ to be the number of $w_{\varepsilon_{\nu}}\left(=w_{2 \varepsilon_{\nu}}\right.$ if $\left.2 \varepsilon_{\nu} \in \Sigma^{+}\right)$which appears in the shortest expression of w.

Set $L(w)=l(w)+(\eta-1) l^{\prime}(w)$ for $w \in W$, where $\eta=1$ for $(S p),=\alpha$ for (O) and (U) with $e=2,=\alpha+1 / 2$ for other cases. We have

Theorem 2. For x in D,

$$
[K x K: K]=\delta(x) \cdot \sum_{w \in W} q^{-L(w)} \cdot\left(\sum_{w \in W_{x}} q^{L(w)}\right) .
$$

References

[1] A. N. Andrianov: Spherical functions for $G L_{n}$ over local fields, and summation of Hecke series. Math USSR Sbornik., 12, 429-451 (1970).
[2] I. G. Macdonald: Spherical functions on a group of p-adic type. Advanced Study of Math., Madras (1970).
[3] I. Satake: Theory of spherical functions on reductive algebraic groups over padic fields. I.H.E.S., 18 (1963).

