48. An Ill-posed Estimate for a Class of Degenerate Quasilinear Elliptic Equations

By Kazuya Hayasida
Department of Mathematics, Faculty of Science, Kanazawa University
(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1991)

§ 1. Introduction. Let D be a domain in R^{N}, and let Γ be an open subset of ∂D, which is said to be an initial surface. We denote by O an origin in R^{N}. We suppose that O is the interior point of Γ. Let L be an elliptic operator in \bar{D}, which may be nonlinear. Let u be a solution of $L(u)=0$ in D. Then the ill-posed estimate in Cauchy's problem is the following: There are an open neighborhood U of O and two constants C, δ with $0<\delta<1$ such that

$$
\begin{equation*}
\|U\|_{2, U \cap D} \leqq C\left(\|u\|_{1, \Gamma}\right)^{\delta}\left(\|u\|_{3, D}\right)^{1-\delta}, \tag{1.1}
\end{equation*}
$$

where $\left\|\|_{i}(i=1,2,3)\right.$ are some norms on $\Gamma, U \cap D$ and D, respectively. In particular, $\left\|\|_{1, \Gamma}\right.$ means some quantity of initial data of u. The investigation with respect to ill-posed estimates of linear operators is referred to John's work [2]. The Hadamard's three circles theorem is close to the estimate (1.1). With respect to the nonlinear case, Výborný [7] has proved recently the Hadamard's three circles theorem for nonlinear uniformly elliptic operators.

The estimate (1.1) implies immediately the unique continuation property, which asserts that $u=0$ in $U \cap D$ if the initial data of u vanishes on I. For elliptic operators with linear principal parts the unique continuation property was extensively studied by many authors. Let $A(x, \xi)$ be a mapping from $D \times R^{N}$ into R^{N} such that for a.e. $x \in R^{N}$ and for all $\xi \in R^{N}$

$$
|A(x, \xi)| \leqq C|\xi|^{p-1}, \quad A(x, \xi) \cdot \xi \geqq c|\xi|^{p}
$$

where $c, C>0$ and $p>1$. Then we consider particularly the elliptic operator L with

$$
\begin{equation*}
L(u)=\operatorname{div}(A(x, \nabla u) \cdot \nabla u) . \tag{1.2}
\end{equation*}
$$

Recently, Martio [5] gave a counterexample of the form (1.2) such that the unique continuation property does not hold. In his counterexample, the function $A(x, \xi)$ and $u(x)$ are constructed skillfully under the conditions such as $p=N \geqq 3, D=\left\{x_{N}>0\right\}$ and $\Gamma=\left\{x_{N}=0\right\}$.

When $N=2$, the unique continuation property holds for the operators of (1.1) under some conditions (see e.g., [1] and [4]). However these method can not be applied to the case of $N \geqq 3$. The difficulty is originated from the degeneration of ellipticity. Thus there arises a question: If $N \geqq 3$, does the unique continuation property, moreover the ill-posed estimate hold for degenerate quasilinear elliptic operators?

In this paper we give a partial affirmative answer for the above ques-
tion. We proceed along the line of [2] and [6], but we yield our estimate without using the Fourier transform.
§2. Result. We write $x=\left(x_{1}, \cdots, x_{N}\right), x^{\prime}=\left(x_{1}, \cdots, x_{N-1}\right)$ and $y=x_{N}$. Thus $x=\left(x^{\prime}, y\right)$. In this paper we consider the operator

$$
L_{k}(u)=\sum_{i=1}^{N} \partial_{x_{i}}\left(\left(\partial_{x_{i}} u\right)^{2 k+1}\right), \quad k=0,1,2, \cdots,
$$

which is a form of (1.2) and is a typical model of the degenerate quasilinear elliptic operator $\sum_{i=1}^{N} \partial_{x_{i}}\left(\left|\partial_{x_{i}} u\right|^{p-2} \partial_{x_{i}} u\right)$ (see e.g., [3, Chap. 2]).

Let D and Γ be the same as in the previous section. We say that D is strictly convex at O, if there is a plane π passing through O, which meets \bar{D} only at O. In this paper we impose the assumption
(A) $\quad \Gamma$ is of class C^{1} and D is strictly convex at O. The positive y axis is the ray perpendicular to π and $D \cap\{y<0\}=\varnothing$.
For $c>0$ we write

$$
D_{c}=D \cap\{0<y<c\}, \quad \Gamma_{c}=\Gamma \cap\{0<y<c\} .
$$

From now on we fix a positive number a such that $a<1 / 2$ and $\partial D_{a}=\Gamma_{a} \cup$ ($\bar{D} \cap\{y=a\}$).

Under the assumption (A) our aim is to prove
Theorem. Lét u be in $C^{1}\left(\bar{D}_{a}\right)$, and let its second derivatives be piecewise continuous in D_{a}. Let

$$
\begin{equation*}
\left|L_{k}(u)\right| \leqq K|u|^{2 k+1} \quad \text { in } D . \tag{2.1}
\end{equation*}
$$

Then, if

$$
\begin{aligned}
& \int_{D \cap\{y=a\}}(|u|+|\nabla u|)^{2 k+2} d S \leqq M, \\
& \int_{\Gamma_{a}}(|u|+|\nabla u|)^{2 k+2} d S \leqq \varepsilon
\end{aligned}
$$

and $\mu \varepsilon \leqq M$, it holds that

$$
\int_{D_{a / 2}} u^{2 k+2} d x \leqq C \varepsilon^{a / 2} M^{1-a / 2},
$$

where C and μ are positive constants depending only on k and K.
§3. Lemmas. First we prepare
Lemma 1. For any nonnegative integer k, there is a positive constant c_{k} such that for $X, Y \in R$

$$
X\left[(X+Y)^{2 k+1}-Y^{2 k+1}\right] \geqq c_{k} X^{2 k+2}, \quad k=0,1,2, \cdots
$$

Proof. We set

$$
f(t)=(1+t)^{2 k+1}-t^{2 k+1}, \quad t \in R .
$$

It is enough to prove that for $k \geqq 1$

$$
\begin{equation*}
f(t) \geqq c_{k} . \tag{3.1}
\end{equation*}
$$

When $t \geqq 0$, (3.1) is correct, since $f(0)=1, f(t)>0$ and $f(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. When $t<0$, we use the equality $f(t)=f(-1-t)$ and we consider the two cases of $-1 \leqq t<0$ and $t<-1$. Then (3.1) follows immediately. We complete the proof.

The following lemma is a slight modification of Poincaré's inequality. The proof is elementary, so we omit it.

Lemma 2. Let $p \geqq 1$, and let u be in $C^{1}\left(\bar{D}_{a}\right)$. Then it holds that

$$
\int_{D_{a}}|u|^{p} d x \leqq C(p, a)\left[\int_{\Gamma_{a}}|u|^{p} d S+\int_{D_{a}}\left|\partial_{y} u\right|^{p} d x\right] .
$$

§4. Proof of our theorem. We denote by (,) the L^{2}-inner product in D_{a}. First we set $v\left(x^{\prime}, y\right)=\exp (\lambda y) \cdot u\left(x^{\prime}, y\right)$ for $\lambda<-1$.

By integration by parts we have

$$
\begin{align*}
& -\left(L_{k}(u), \exp ((2 k+1) \lambda y) \cdot \partial_{y} v\right) \tag{4.1}\\
= & \sum_{i=1}^{N-1}\left(\left(\partial_{x_{i}} v\right)^{2 k+1}, \partial_{x_{i}} \partial_{y} v\right) \\
& +\left(\exp (-(2 k+1) \lambda y) \cdot\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y}\left(\exp ((2 k+1) \lambda y) \cdot \partial_{y} v\right)\right) \\
& -\sum_{i=1}^{N-1} \int_{\partial D_{a}}\left(\partial_{x_{i}} v\right)^{2 k+1} \partial_{y} v \cdot \cos \left(x_{i}, n\right) d S \\
& -\int_{\partial D_{a}}\left(\partial_{y} v-\lambda v\right)^{2 k+1} \partial_{y} v \cdot \cos (y, n) d S,
\end{align*}
$$

where \boldsymbol{n} is an outernormal of ∂D_{a} and $\left(x_{i}, \boldsymbol{n}\right),(y, \boldsymbol{n})$ are the angles between x_{i} and n, y and n, respectively. On the other hand

$$
\left(\left(\partial_{x_{i}} v\right)^{2 k+1}, \partial_{x_{i}} \partial_{y} v\right)=\frac{1}{2(k+1)} \int_{\partial D_{a}}\left(\partial_{x_{i}} v\right)^{2 k+2} \cos (y, n) d S,
$$

and the second term on the right-hand side of (4.1) equals

$$
\left(\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y}^{2} v+(2 k+1) \lambda \partial_{y} v\right) .
$$

Thus (4.1) becomes

$$
\begin{equation*}
-\left(L_{k}(u), \exp ((2 k+1) \lambda y) \cdot \partial_{y} v\right)=\left(\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y}^{2} v+(2 k+1) \lambda \partial_{y} v\right)+I_{1}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{1}= & \frac{1}{2(k+1)} \sum_{i=1}^{N-1} \int_{\partial D_{a}}\left(\partial_{x_{i}} v\right)^{2 k+2} \cos (y, \boldsymbol{n}) d S \\
& -\sum_{i=1}^{N-1} \int_{\partial D_{a}}\left(\partial_{x_{i}} v\right)^{2 k+1} \partial_{y} v \cdot \cos \left(x_{i}, \boldsymbol{n}\right) d S \\
& -\int_{\partial D_{a}}\left(\partial_{y} v-\lambda v\right)^{2 k+1} \partial_{y} v \cdot \cos (y, \boldsymbol{n}) d S .
\end{aligned}
$$

Now we calculate the first term on the right-hand side of (4.2). First

$$
\left(\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y}^{2} v\right)=\sum_{j=0}^{2 k+1}\binom{2 k+1}{j}\left(\left(\partial_{y} v\right)^{j}(-\lambda v)^{2 k+1-j}, \partial_{y}^{2} v\right)
$$

Obviously

$$
\begin{aligned}
\left(\left(\partial_{y} v\right)^{j} v^{2 k+1-j}, \partial_{y}^{2} v\right)= & -\frac{2 k+1-j}{j+1}\left(\left(\partial_{y} v\right)^{j+2}, v^{2 k-j}\right) \\
& +\frac{1}{j+1} \int_{\partial D_{a}} v^{2 k+1-j}\left(\partial_{y} v\right)^{j+1} \cos (y, n) d S
\end{aligned}
$$

Since $\binom{2 k+1}{j}(2 k+1-j) /(j+1)=\binom{2 k+1}{j+1}$, we have

$$
\begin{aligned}
\left(\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y}^{2} v\right)= & \lambda \sum_{j=-1}^{2 k}\binom{2 k+1}{j+1}(-\lambda)^{2 k-j} \\
& \times\left(\left(\partial_{y} v\right)^{j+2}, v^{2 k-j}\right)-\lambda(-\lambda)^{2 k+1}\left(\partial_{y} v, v^{2 k+1}\right)+I_{2},
\end{aligned}
$$

where

$$
I_{2}=\sum_{j=0}^{2 k+1}\binom{2 k+1}{j} \frac{1}{j+1} \cdot \int_{\partial D_{a}}(-\lambda v)^{2 k+1-j}\left(\partial_{y} v\right)^{j+1} \cos (y, \boldsymbol{n}) d S .
$$

It becomes

$$
\begin{gathered}
\left(\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y}^{2} v\right)= \\
\sum_{j=0}^{2 k+1}\binom{2 k+1}{j}\left(\left(\partial_{y} v\right)^{j+1},(-\lambda v)^{2 k+1-j}\right) \\
\\
+\lambda^{2 k+2}\left(\partial_{y} v, v^{2 k+1}\right)+I_{2} .
\end{gathered}
$$

And we have

$$
\left(\left(\partial_{y} v-\lambda v\right)^{2 k+1}, \partial_{y} v\right)=\sum_{j=0}^{2 k+1}\binom{2 k+1}{j}\left(\left(\partial_{y} v\right)^{j+1},(-\lambda v)^{2 k+1-j}\right)
$$

From the above inequalities it follows that

$$
\text { the right-hand side of }(4.1)=2(k+1) \lambda
$$

$$
\begin{aligned}
& \times\left[\sum_{j=0}^{2 k+1}\binom{2 k+1}{j}\left(\left(\partial_{y} v\right)^{j+1},(-\lambda v)^{2 k+1-j}\right)-\left(\partial_{y} v,(-\lambda v)^{2 k+1}\right)\right] \\
& -(2 k+1) \lambda^{2 k+2}\left(\partial_{y} v, v^{2 k+1}\right)+I_{1}+I_{2} \\
= & 2(k+1) \lambda\left(\partial_{y} v,\left(\partial_{y} v-\lambda v\right)^{2 k+1}-(-\lambda v)^{2 k+1}\right)+\sum_{j=1}^{3} I_{j},
\end{aligned}
$$

where

$$
I_{3}=-\frac{2 k+1}{2(k+1)} \lambda^{2 k+2} \int_{\partial D_{a}} v^{2 k+2} \cos (y, n) d S
$$

Combining this and (4.1) with Lemma 1, we conclude that

$$
\begin{equation*}
\left(L_{k}(u), \exp ((2 k+1) \lambda y) \cdot \partial_{y} v\right) \geqq 2(k+1) c_{k}|\lambda|\left(1,\left(\partial_{y} v\right)^{2 k+2}\right)-\sum_{j=1}^{3} I_{j} . \tag{4.3}
\end{equation*}
$$

By Cauchy's inequality

$$
\begin{aligned}
& \left|\left(L_{k}(u), \exp ((2 k+1) \lambda y) \cdot \partial_{y} v\right)\right| \leqq \frac{1}{2(k+1)} \int_{D_{a}}\left(\partial_{y} v\right)^{2 k+2} d x \\
& \quad+\frac{2 k+1}{2(k+1)} \int_{D_{a}} \exp (2(k+1) \lambda y) \cdot\left|L_{k}(u)\right|^{2(k+1) /(2 k+1)} d x .
\end{aligned}
$$

Further we easily see that

$$
\left|\sum_{j=1}^{3} I_{j}\right| \leqq C \int_{\partial D_{a}}\left(|\nabla v|^{2 k+2}+|\lambda|^{2 k+2} v^{2 k+2}\right) d S
$$

where C depends only on k. Combining these inequalities with (4.3) and (2.1) we have

$$
\int_{D_{a}}\left(\partial_{y} v\right)^{2 k+2} d x \leqq C|\lambda|^{-1}\left[\int_{D_{a}} v^{2 k+2}+\int_{\partial D_{a}}\left(|\nabla v|^{2 k+2}+|\lambda|^{2 k+2} v^{2 k+2}\right) d S\right]
$$

for $\lambda<-\lambda_{0}\left(\lambda_{0}>0\right)$. Applying Lemma 2 for $p=2 k+2$, we obtain

$$
\begin{aligned}
\int_{D_{a / 2}} v^{2 k+2} d x \leqq & C|\lambda|^{2 k+2}\left[\int_{\Gamma_{a}}(|u|+|\nabla u|)^{2 k+2} d S\right] \\
& +\exp (2(k+1) \lambda a) \int_{D \cap\{y=a\}}\left(|u|+|\nabla u|^{2 k+2} d S .\right.
\end{aligned}
$$

Hence

$$
\int_{D_{a / 2}} u^{2 k+2} d x \leqq C|\lambda|^{2 k+2} \exp (-(k+1) \lambda a) \cdot(\varepsilon+M \exp (2(k+1) \lambda a))
$$

Taking λ_{0} as large as desired, we note that

$$
|\lambda|^{2 k+2} \exp (-(k+1) \lambda a) \leqq C \exp (-3(k+1) \lambda a / 2) .
$$

Setting $\lambda=-1 /(k+1) \log (M / \varepsilon)$, we obtain finally

$$
\int_{D_{a / 2}} u^{2 k+2} d x \leqq C\left(\varepsilon^{1-(3 a / 2)} M^{3 a / 2}+\varepsilon^{a / 2} M^{1-(a / 2)}\right) .
$$

This completes the proof.

References

[1] Alessandrini, G.: Critical points of solutions to the p-Laplace equation in dimension two. Boll. Un. Mat. Ital., (7), 1-A, 239-246 (1987).
[2] John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Comm. Pure Appl. Math., 13, 551-585 (1960).
[3] Lions, J. L.: Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod/Gauthier Villars (1969).
[4] Manfredi, J. J.: p-harmonic functions in the plane. Proc. Amer. Math. Soc., 103, 473-479 (1988).
[5] Martio, O.: Counterexamples for unique continuation. Manuscripta Math., 60, 21-47 (1988).
[6] Nirenberg, L.: Uniqueness in Cauchy problems for differential equations with constant leading coefficients. Comm. Pure Appl. Math., 10, 89-105 (1957).
[7] Výborný, R.: The Hadamard three-circles theorems for nonlinear equations. J. Austral. Math. Soc., A 49, 297-302 (1990).

