30. On Regular Subalgebras of a Symmetrizable Kac-Moody Algebra

By Satoshi NAITO
Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1991)

Let g(A) be a Kac-Moody algebra with A a symmetrizable generalized Cartan matrix (= GCM) over the complex number field C. In this paper, we study its certain subalgebras called regular subalgebras. These subalgebras are defined as a natural infinite dimensional analogue of regular semi-simple subalgebras of a finite dimensional complex semi-simple Lie algebra in the sense of Dynkin. The latter plays an important role in the classification of semi-simple subalgebras (cf. [1]).

§ 1. Definition of regular subalgebras. Let A be an $n \times n$ symmetrizable GCM, and \mathfrak{h} be a Cartan subalgebra of the Kac-Moody algebra $\mathfrak{g}(A)$. Then we have the root space decomposition of $\mathfrak{g}(A)$:

$$g(A) = \mathfrak{h} \oplus \sum_{\alpha \in A}^{\oplus} \mathfrak{g}_{\alpha}$$
,

where $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g}(A) ; [h, x] = \langle \alpha, h \rangle x$, for all $h \in \mathfrak{h}\}$ for $\alpha \in \mathfrak{h}^*$ (the algebraic dual of \mathfrak{h}), and $\Delta \subset \mathfrak{h}^*$ is the root system of $\mathfrak{g}(A)$ (see [3] for details). To define a *regular subalgebra* of $\mathfrak{g}(A)$, we introduce the notion of *fundamental* subset of Δ .

Definition 1.1. A subset $\overline{II} = \{\beta_1, \dots, \beta_m, \beta_{m+1}, \dots, \beta_{m+k}\}$ of the root system Δ of $\mathfrak{g}(A)$ is called *fundamental* if it satisfies the following:

- (1) $\overline{\Pi} = \{\beta_r\}_{r=1}^{m+k}$ is a linearly independent subset of \mathfrak{h}^* ;
- (2) $\beta_s \beta_t \notin \Delta \cup \{0\} \ (1 \leq s \neq t \leq m+k);$
- (3) β_i is a real root $(1 \le i \le m)$ and β_j is a positive imaginary root $(m+1 \le j \le m+k)$.

Now, let $(\cdot | \cdot)$ be a fixed standard invariant form on $\mathfrak{g}(A)$ such that $(\alpha_i | \alpha_j) \in \mathbb{Z}$ $(1 \le i, j \le n)$, where $\{\alpha_i\}_{i=1}^n \subset \mathcal{A}$ is the set of all simple roots of $\mathfrak{g}(A)$ (cf. [3, Chap. 2]). For each imaginary root β_j $(m+1 \le j \le m+k)$, we define $\beta_j^{\vee} := \nu^{-1}(\beta_j) \in \mathfrak{h}$, where $\nu : \mathfrak{h} \to \mathfrak{h}^*$ is a linear isomorphism determined by $\langle \nu(h), h' \rangle = (h | h')$ $(h, h' \in \mathfrak{h})$. For real root β_i $(1 \le i \le m)$, $\beta_i^{\vee} \in \mathfrak{h}$ has been defined as a dual real root of β_i , and we know $\beta_i^{\vee} = 2/(\beta_i | \beta_i) \cdot \nu^{-1}(\beta_i)$ (cf. [3, Chap. 5]).

Proposition 1.1. Let $\bar{\Pi} = \{\beta_r\}_{r=1}^{m+k}$ be a fundamental subset of Δ , and put $\overline{A} := (\bar{a}_{i,t})_{i,j=1}^{m+k}$, where $\bar{a}_{i,j} = \langle \beta_j, \beta_i^{\vee} \rangle$. Then, \overline{A} is a symmetrizable GGCM (= generalized GCM). Moreover, $\bar{a}_{i,t} = 2$ if and only if β_i is a real root $(1 \le i \le m+k)$.

Here, \overline{A} is a GGCM means that \overline{A} satisfies the following:

- (C1) either $\bar{a}_{ii} = 2$ or \bar{a}_{ii} is a non-positive integer;
- (C2) \bar{a}_{ij} is a non-positive integer if $i \neq j$;

(C3) $\bar{a}_{ij} = 0$ implies $\bar{a}_{ji} = 0$.

Note that when $\bar{a}_{ii}=2$ for every i, \bar{A} is a GCM.

Let $\mathfrak{g}(\overline{A})$ be the Lie algebra associated to the above GGCM \overline{A} (see [3, Chaps. 1 and 11]). We call it a generalized Kac-Moody algebra (= GKM algebra). Note that when \overline{A} is a GCM, $\mathfrak{g}(\overline{A})$ is a Kac-Moody algebra by definition.

Proposition 1.2. There exists a vector subspace \mathfrak{h}_0 of \mathfrak{h} , such that the triple $(\mathfrak{h}_0, \{\beta_r | \mathfrak{h}_0\}_{r=1}^{m+k}, \{\beta_r^\vee\}_{r=1}^{m+k})$ is a realization of the GGCM \overline{A} . That is, it satisfies the following conditions:

- (R1) both the sets $\{\beta_r | \mathfrak{h}_0\}_{r=1}^{m+k} \subset \mathfrak{h}_0^*$ and $\{\beta_r^{\vee}\}_{r=1}^{m+k} \subset \mathfrak{h}_0$ are linearly independent;
- (R2) $\langle \beta_j, \beta_i^{\vee} \rangle = \bar{a}_{ij} (1 \leq i, j \leq m + k);$
- (R3) $\dim_{\mathcal{C}} \mathfrak{h}_0 = 2(m+k) \operatorname{rank} \overline{A}$.

We fix non-zero vectors $E_r \in \mathfrak{g}_{\beta_r}$ and $F_r \in \mathfrak{g}_{-\beta_r}$ such that $[E_r, F_r] = \beta_r^{\vee}$ $(1 \le r \le m + k)$. Note that such vectors always exist since $[\mathfrak{g}_a, \mathfrak{g}_{-a}] = C \nu^{-1}(\alpha)$ for all $\alpha \in \Delta$. Let $\bar{\mathfrak{g}}$ be a subalgebra of $\mathfrak{g}(A)$ generated by E_r , F_r $(1 \le r \le m + k)$, and a vector subspace \mathfrak{h}_0 of \mathfrak{h} which satisfies (R1)–(R3). We call this kind of subalgebra a regular subalgebra of $\mathfrak{g}(A)$.

Theorem 1.1. Any regular subalgebra of $\mathfrak{g}(A)$ is canonically isomorphic to a GKM algebra. Let $\bar{\mathfrak{g}}$ be as above. Then, a canonical isomorphism Φ of a GKM algebra $\mathfrak{g}(\overline{A})$ onto $\bar{\mathfrak{g}}$ is given as:

Remark 1.1. In the above theorem, we adopt the definition in [3, Chap. 11] of GKM algebras, which is a little different from that of Borcherds in [1]. As seen above, regular subalgebras are always isomorphic to GKM algebras, but not necessarily isomorphic to Kac-Moody algebras in general.

Remark 1.2. The above definition of a fundamental subset \bar{II} of Δ and the construction of a subalgebra \bar{g} of g(A) corresponding to \bar{II} are generalizations of those by Morita [5]. There, he considered only the case all β_{τ} are real roots (i.e., k=0 in the above definition) and constructed a subalgebra \hat{g} , which coincides with the derived algebra $[\bar{g}, \bar{g}]$ of the above \bar{g} .

Remark 1.3. The subalgebra \bar{g} depends on the choice of the vector subspace \mathfrak{h}_0 of \mathfrak{h} satisfying (R1)–(R3). However, its derived algebra $[\bar{g}, \bar{g}]$ does not depend on the choice of \mathfrak{h}_0 .

Proposition 1.3. We have the following two decompositions of \bar{g} :

- $(I) \qquad \bar{\mathfrak{g}} = \sum_{\alpha \in Q_{+} \setminus \{0\}}^{\oplus} (\bar{\mathfrak{g}} \cap \mathfrak{g}_{\alpha}) \oplus (\bar{\mathfrak{g}} \cap \tilde{\mathfrak{h}}) \oplus \sum_{\alpha \in Q_{+} \setminus \{0\}}^{\oplus} (\bar{\mathfrak{g}} \cap \mathfrak{g}_{-\alpha}),$
- (II) $\bar{\mathfrak{g}} = \sum_{\beta \in \bar{\mathcal{Q}}_{+} \setminus \{0\}}^{\oplus} (\bar{\mathfrak{g}} \cap \mathfrak{g}_{\beta}) \oplus \mathfrak{h}_{0} \oplus \sum_{\beta \in \bar{\mathcal{Q}}_{+} \setminus \{0\}}^{\oplus} (\bar{\mathfrak{g}} \cap \mathfrak{g}_{-\beta}),$

with $Q_+ := \sum_{i=1}^n Z_{\geq 0} \alpha_i$ and $\overline{Q}_+ := \sum_{r=1}^{m+k} Z_{\geq 0} \beta_r$. Moreover for every $\beta \in \overline{Q} := \sum_{r=1}^{m+k} Z \beta_r$, we have $\overline{\mathfrak{g}} \cap \mathfrak{g}_{\beta} = \overline{\mathfrak{g}}_{\beta}$, where $\overline{\mathfrak{g}}_{\beta} := \{x \in \overline{\mathfrak{g}} : [h, x] = \langle \beta, h \rangle x$, for all $h \in \mathfrak{h}_0\}$. Here we identify $\beta_r \in \mathfrak{h}^*$ with $\beta_r | \mathfrak{h}_0 \in \mathfrak{h}_0^*$ (since $\{\beta_r | \mathfrak{h}_0\}_{r=1}^{m+k} \subset \mathfrak{h}_0^*$ is linearly independent).

From the above proposition, we can regard the root system $\bar{\Delta}$ of $\mathfrak{g}(\bar{A})$ $\cong \bar{\mathfrak{g}}$ as a subset of the root system Δ of $\mathfrak{g}(A)$, by the identification of $\beta_r | \bar{\mathfrak{h}}_0$ with β_r ($1 \le r \le m + k$), because $\bar{\Delta}$ is a subset of $\sum_{r=1}^{m+k} Z(\beta_r | \bar{\mathfrak{h}}_0)$. Under this identification, we have the following:

$$\bar{\Delta} = \{ \beta \in \Delta ; \bar{\mathfrak{g}} \cap \mathfrak{g}_{\beta} \neq \{0\} \}.$$

Definition 1.2 (cf. [5]). $\bar{\Delta}$ is called a root subsystem of Δ .

§ 2. The inheritance of a standard invariant form. In this section, we assume that a fundamental subset \bar{H} consists of real roots (i.e., k=0 in Definition 1.1). So, the matrix $\overline{A} = (\langle \beta_j, \beta_i^{\vee} \rangle)_{i,j=1}^m$ is a GCM and the subalgebra $\bar{g} \cong g(\overline{A})$ is a Kac-Moody algebra. In this situation, we can take a "good" vector subspace \bar{h}_0 of \bar{h} as a vector subspace \bar{h}_0 in Theorem 1.1 as shown below. Let $\bar{H} = \{\beta_1, \dots, \beta_m\}$ be a fundamental subset consisting of real roots and $\bar{A} = (\langle \beta_j, \beta_i^{\vee} \rangle)_{i,j=1}^m$. We put $l := \operatorname{rank} A$ and $t := \operatorname{rank} \bar{A}$, then clearly, $t \leq l$ and $t \leq m$.

Proposition 2.1. There exists a basis $\{h_i\}_{i=1}^{m+N} \cup \{v_j\}_{j=1}^{m-t}$ of \mathfrak{h} , such that the presentation matrix R of the standard invariant form $(\cdot | \cdot)$ on $\mathfrak{g}(A)$ with respect to this basis is of the form

$$R = egin{bmatrix} J_1 & O & O & O \ O & O_{m-t} & O & I_{m-t} \ O & O & J_2 & O \ O & I_{m-t} & O & O_{m-t} \ \end{pmatrix},$$

where I_{m-t} is the identity matrix of degree m-t, O_{m-t} is the zero matrix of degree m-t, $J_1 = \operatorname{diag}(\pm 1, \pm 1, \dots, \pm 1) : t \times t$ -matrix, and $J_2 = \operatorname{diag}(\pm 1, \pm 1, \dots, \pm 1) : N \times N$ -matrix with $N := (2n-l) - (2m-t)(\geq 0)$.

Now let $\bar{h}_0 := \sum_{i=1}^m Ch_i + \sum_{j=1}^{m-t} Cv_j$. Then, we have the following.

Proposition 2.2. The triple $(\bar{h}_0, \{\beta_i | \bar{h}_0\}_{i=1}^m, \{\beta_i^{\vee}\}_{i=1}^m)$ is a realization of the GCM \bar{A} .

Let $\bar{\mathfrak{g}}$ be a subalgebra of $\mathfrak{g}(A)$ generated by E_r , F_r $(1 \leq r \leq m)$, and the above $\bar{\mathfrak{h}}_0$. Then, we see from Theorem 1.1 that $\bar{\mathfrak{g}}$ is canonically isomorphic to a Kac-Moody algebra $\mathfrak{g}(\bar{A})$. Moreover, we can prove the following theorem thanks to the construction of $\bar{\mathfrak{h}}_0$ in such a detailed way as above.

Theorem 2.1. Let $\bar{\mathfrak{g}}\subset \mathfrak{g}(A)$ be a regular subalgebra constructed from the above $\bar{\mathfrak{h}}_0$. Put $\bar{B}:=((\beta_i | \beta_j))_{i,j=1}^m$ and $\bar{D}:=\operatorname{diag}(2/(\beta_i | \beta_i), \cdots, 2/(\beta_m | \beta_m))$, where $(\cdot | \cdot)$ is the fixed standard invariant form on $\mathfrak{g}(A)$. Then, the restriction of $(\cdot | \cdot)$ to $\bar{\mathfrak{g}}\subset \mathfrak{g}(A)$ coincides with a standard invariant form on $\bar{\mathfrak{g}}$, which is canonically identified with $\mathfrak{g}(\bar{A})$.

This standard invariant form on $\bar{\mathfrak{g}} \cong \mathfrak{g}(\overline{A})$ is determined by the following:

- $(F1) \quad (\beta_i^{\vee} \mid h) := \langle \beta_i, h \rangle \cdot 2/(\beta_i \mid \beta_i) \quad (h \in \overline{\mathfrak{h}}_0, 1 \leq i \leq m),$
- (F2) $(h'|h'') := 0 \quad (h', h'' \in \sum_{j=1}^{m-t} Cv_j),$
- (F3) $([x, y]|z) = (x|[y, z]) \quad (x, y, z \in \bar{\mathfrak{g}}).$

Here this form, viewed from $\mathfrak{g}(\overline{A})$, corresponds to the decomposition $\overline{A} = \overline{D}\overline{B}$ and to a complementary subspace $\sum_{j=1}^{m-t} Cv_j$ to $\sum_{i=1}^m C\beta_i^{\vee}$ in $\overline{\mathfrak{h}}_0$.

We denote by Δ^{re} (resp. Δ^{im}) the set of all real (resp. imaginary) roots of g(A). Correspondingly, we denote by $\overline{\Delta}^{re}$ (resp. $\overline{\Delta}^{im}$) the set of all real (resp. imaginary) roots for the root system $\overline{\Delta}$ of $g(\overline{A})$. Then, we have the following as a direct consequence of Theorem 2.1.

Theorem 2.2. For the root system $\overline{\Delta}$ of $\mathfrak{g}(\overline{A})$ ($\cong \overline{\mathfrak{g}}$), regarded as a root subsystem of Δ , we have

$$\bar{\Delta}^{re} = \bar{\Delta} \cap \Delta^{re}, \quad \bar{\Delta}^{im} = \bar{\Delta} \cap \Delta^{im}.$$

- § 3. Type of the GGCM $\bar{A} = (\langle \beta_i, \beta_i^{\vee} \rangle)_{i,j=1}^{m+k}$.
- 3.1. Some generalities. As an application of Theorem 2.1, we obtain the following theorem.

Theorem 3.1. Let $A = (a_{ij})_{i,j=1}^n$ be a GCM of affine type, and $\Pi = \{\beta_r\}_{r=1}^{m+k}$ be a fundamental subset of Δ . Put $\overline{A} := (\langle \beta_j, \beta_i^{\vee} \rangle)_{i,j=1}^{m+k}$. Then, we have either of the following two cases:

Case (a). $\overline{\Pi}$ is contained in Δ^{re} , and \overline{A} is a direct sum of GCM's of finite type or of affine type. Moreover, the number of direct summands of affine type is at most one.

Case (b). $\bar{\Pi}$ contains exactly one imaginary root, and \bar{A} is a direct sum of the zero matrix O_1 of degree 1 (with multiplicity one) and GCM's of finite type.

Remark 3.1. Note that the derived algebra of the Lie algebra $g(O_1)$ associated to the 1×1 GGCM O_1 is a Heisenberg Lie algebra ([3, Chap. 2]).

Contrary to this affine case, we have the following example for hyperbolic case.

Example 3.1. Let A be a 3×3 -matrix given below. Then A is a GCM of hyperbolic type with the Dynkin diagram below.

$$A = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad \bigcirc \Longleftrightarrow \bigcirc --- \bigcirc.$$

Put $\beta_1 := (r_3 r_2)(\alpha_1)$, $\beta_2 := r_1(\beta_1)$, and $\beta_3 := r_2(\beta_2)$, where r_i is a fundamental reflection defined by a simple root $\alpha_i \in \mathcal{A}$ $(1 \le i \le 3)$. Put $\overline{\mathcal{H}} := \{\beta_1, \beta_2, \beta_3\} \subset \mathcal{A}^{r_\ell}$. Then, $\overline{\mathcal{H}}$ is a fundamental subset. The corresponding GCM $\overline{\mathcal{A}}$ and its Dynkin diagram are as follows.

$$\overline{A} = \begin{bmatrix} 2 & -2 & -2 \\ -2 & 2 & -14 \\ -2 & -14 & 2 \end{bmatrix}, \qquad \bigcirc \underbrace{ \begin{bmatrix} 14,14) \\ \hline{} \\ \hline{} \end{bmatrix}}_{\bigcirc} \bigcirc .$$

Obviously, \overline{A} is neither of finite type, of affine type, nor of hyperbolic type. (See [4] for a similar example.)

3.2. Case of affine type GCM. In this subsection, we assume that the GCM $A=(a_{ij})_{i,j=0}^l$ is of non-twisted affine type (cf. [3, Chaps. 4 and 6]). So, there exists $\delta=(a_i)_{i=0}^l$ such that $A\delta=0$ and $a_i\in Z_{\geq 1}$ for all i $(0\leq i\leq l)$. Such a δ is unique under the condition that a_i $(0\leq i\leq l)$ are relatively prime. We take such a δ , and also denote $\sum_{i=0}^l a_i\alpha_i$ by δ . Then, we know the following facts:

$$\Delta^{im} = \{k\delta; k \in \mathbb{Z} \setminus \{0\}\}, \qquad \Delta^{re} = \{\gamma + k\delta; \gamma \in \mathring{\Delta}, k \in \mathbb{Z}\},$$

where $\mathring{\mathcal{A}}$ is the root system of the finite type Kac-Moody algebra $\mathfrak{g}(\mathring{A}) \subset \mathfrak{g}(A)$ associated to the principal submatrix $\mathring{A} := (a_{ij})_{i,j=1}^l$ of A. Note that the removed vertex 0 of the Dynkin diagram of A is so chosen that $a_0 = 1$ and the type of \mathring{A} is X_t when the type of A is $X_t^{(1)}$ ($X = A, B, \dots, G$). Here we have the following theorem.

Theorem 3.2. Let $A = (a_{ij})_{i,j=0}^l$ be a GCM of non-twisted affine type. Then, the Dynkin diagram of the GGCM \overline{A} corresponding to a fundamental subset $\overline{\Pi}$ of Δ is of type either O_1 , $X_{t_1} + X_{t_2} + \cdots + X_{t_r}$, $X_{t_1}^{(1)} + X_{t_2} + \cdots + X_{t_r}$, $X_{t_1} + X_{t_2}^{(1)} + \cdots + X_{t_r}$, or $X_{t_1} + X_{t_2} + \cdots + X_{t_r}^{(1)}$, where $X_{t_1} + X_{t_2} + \cdots + X_{t_r}$ is the type of Dynkin diagram of the GCM corresponding to a fundamental subset of the root system $\mathring{\Delta}$ of $\mathfrak{g}(\mathring{A})$.

Conversely, for each of the above types, there exists a fundamental subset of Δ whose Dynkin diagram is of that type.

Here X_{t_i} is the type of a finite type GCM of rank t_i , and O_1 denotes also the type of 1×1 GGCM O_1 .

Note that when A is of non-twisted affine type, Case (b) in Theorem 3.1 does not happen except for the trivial case that \overline{II} consists of only one imaginary root. Owing to the above theorem, we can determine all the types of regular subalgebras (= the types of the GGCM's corresponding to fundamental subsets of Δ) of the non-twisted affine Lie algebra $\mathfrak{g}(A)$. This is because those of the finite dimensional simple Lie algebra $\mathfrak{g}(A)$ are completely determined (see [2, Chap. II, §5]).

Remark 3.2. Also in the case of twisted affine type GCM, but not of type $A_{2l}^{(2)}$ ($l \ge 1$), the sufficiency part (the second part) of Theorem 3.2 is true. Here note that for the GCM $A = (a_{ij})_{i,j=0}^l$ of type $A_{2l-1}^{(2)}$ ($l \ge 3$), $D_{l+1}^{(2)}$ ($l \ge 2$), $E_6^{(2)}$ or $D_4^{(3)}$, the type of $\mathring{A} = (a_{ij})_{i,j=1}^l$ is C_l , B_l , F_4 , or G_2 , respectively.

Acknowledgements. The author expresses his heartfelt thanks to Profs. T. Hirai and K. Suto for helpful discussions. He is also grateful to Prof. J. Morita for sending his preprint from Germany.

References

- [1] R. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 115, 501-512 (1988).
- [2] E. B. Dynkin: Semi-simple subalgebras of semi-simple Lie algebras. Amer. Math. Soc. Transl., 6, 111-244 (1957).
- [3] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge University Press, Cambridge (1990).
- [4] R. V. Moody and A. Pianzola: On infinite root systems. Trans. Amer. Math. Soc., 315, 661-696 (1989).
- [5] J. Morita: Certain rank two subsystems of Kac-Moody root systems. Infinite Dimensional Lie Algebras and Groups (ed. V. G. Kac). Adv. Ser. in Math. Phys., 7, 52-56, World Scientific, Singapore, New Jersey (1989).