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Let g(A) be a Kac-Moody algebra with A a symmetrizable generalized
Cartan matrix (= GCM) over the complex number field C. In this paper,
we study its certain subalgebras called regular subalgebras. These sub-
algebras are defined as a natural infinite dimensional analogue of regular
semi-simple subalgebras of a finite dimensional complex semi-simple Lie
algebra in the sense of Dynkin. The latter plays an important role in the
clagsification of semi-simple subalgebras (cf. [1]).

§1. Definition of regular subalgebras. Let A be an n X% symmetri-
zable GCM, and §) be a Cartan subalgebra of the Kac-Moody algebra g(A).
Then we have the root space decomposition of g(4):

g(A)=HD > %, 8.
where g,={xz ¢ g(4); [h, x]={a, h)x, for all heh} for a e h* (the algebraic
dual of §), and 4Ch* is the root system of g(A) (see [3] for details). To
define a regular subalgebra of g(4), we introduce the notion of fundamental
subset of 4.

Definition 1.1. A subset /7={8, -+, Bm» Brs1>» * *» Busx} Of the root
system 4 of g(A4) is called fundamental if it satisfies the following:

(1) II={B, )} is a linearly independent subset of §*;

(2) B,—Pp edU{0}ALs£t<m+k);

(8) P, is a real root 1<i<m) and B, is a positive imaginary root

(m+1<j<m+k).

Now, let (-|-) be a fixed standard invariant form on g(4) such that
(o;|t)) € Z (1 <i, j<m), where {a,};.,C 4 is the set of all simple roots of g(A4)
(cf. [3, Chap. 2]). For each imaginary root g, (m+1<j<m+k), we define
By :=v"'(B,) eh, where v: h—h* is a linear isomorphism determined by
&), Wy=(h|k) (h,W €h). For real root B, 1<i<m), By €h has been
defined as a dual real root of 8;, and we know BY=2/(8,|B) v '(8) (cf. [3,
Chap. 5]).

Proposition 1.1. Let II={g,}™ be a fundamental subset of 4, and
put A:=@, )1k, where a,;={8;, BY>. Then, A is a symmetrizable GGCM
(= generalized GCM). Moreover, d,,=2 if and only if B, is a real root
aA<i<m+k).

Here, A is a GGCM means that A satisfies the following :

(C1) either @,,=2 or d,, is a non-positive integer;

(C2) a,, is a non-positive integer if i=£7;
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(C3) @a,;=0 implies @,,=0.

Note that when a,,=2 for every i, A is a GCM.

Let g(A) be the Lie algebra associated to the above GGCM 4 (see [3,
Chaps. 1 and 11]). We call it a generalized Kac-Moody algebra (= GKM
algebra). Note that when A4 is a GCM, g(4) is a Kac-Moody algebra by
definition.

Proposition 1.2. There exists a vector subspace Y, of Y, such that the
triple Gy, {8, | Do}, {BYYr2F) is a realization of the GGCM A. That is, it
satisfies the followmg conditions :

(R1) both the sets {B,|h}rFChf and {BY}rHCh, are linearly inde-

pendent ;

(R2) By BY>=a, (1 <i,j<m+k);

(R3) dimgh,=2(m-+k)—rank A.

We fix non-zero vectors E,eg, and F,eg_, such that [F,, F,]=8Y
(A<r<m-+k). Note that such vectors always exist since [g,, g_.J=Cv(a)
for all e 4. Let g be a subalgebra of g(4) generated by E,, F, A<r<m
+ k), and a vector subspace §, of § which satisfies (R1)-(R3). We call this
kind of subalgebra a regular subalgebra of g(A).

Theorem 1.1. Any regular subalgebra of g(A) is canonically isomor-
phic to o GKM algebra. Let § be as above. Then, a canonical isomor-
phism @ of oo GKM algebra g(A) onto §is given as:

O(@e)=E, O(f)=F, QA<r<m+k), and 0=,
Here (Y, {@, )F, (@Y Y™") is @ realization of the GGCM A, and e,, f, 1<r<
m-+k) are the Chevalley generators of the GKM algebra g(A).

Remark 1.1. In the above theorem, we adopt the definition in [3,
Chap. 11] of GKM algebras, which is a little different from that of Bor-
cherds in [1]. As seen above, regular subalgebras are always isomorphic to
GKM algebras, but not necessarily isomorphic to Kac-Moody algebras in
general.

Remark 1.2. The above definition of a fundamental subset /7 of 4
and the construction of a subalgebra g of g(A) corresponding to /I are
generalizations of those by Morita [56]. There, he considered only the case
all B, are real roots (i.e., k=0 in the above definition) and constructed a
subalgebra §, which coincides with the derived algebra [g, gl of the above g.

Remark 1.3. The subalgebra g depends on the choice of the vector
subspace ), of §) satisfying (R1)-(R3). However, its derived algebra [g, gl
does not depend on the choice of Y,.

Proposition 1.3. We have the following two decompositions of §:

(I) 3=2% 0 @Ng)®EN D2 0w @NG-,
(I §=2 %a.0 (@ ﬂ gﬂ)("BE)OOZﬁeQM(O) BNg-p, _
with Q, :=3 7.1 Z., and Q,:=>"FZ..8,. Moreover for every fe@:=

> mkZB,, we have gﬂgﬁ_gﬂ, where 3,:={xed; [k, x]=<B, h)x, for all
heb}. Here we identify B, € b* with 8,9, € b (since {8, |5} Ch§ is line-
arly independent).
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From the above proposition, we can regard the root system 4 of g(4)
=g as a subset of the root system 4 of g(4), by the identification of 3,|b,
with 8, A <r<m-+k), because 4 is a subset of >, Z(8,|5). Under this
identification, we have the following :

d={pe 4;3Ngs#{0}}.

Definition 1.2 (cf. [5]). 4 is called a root subsystem of 4.

§2. The inheritance of a standard invariant form. In this section,
we assume that a fundamental subset /7 consists of real roots (i.e., k=0 in
Definition 1.1). So, ,the matrix 4=({8,, BYD)?;-, isa GCM and the subalgebra
g=g(A4) is a Kac-Moody algebra. In this situation, we can take a “good”
vector subspace f, of §) as a vector subspace §j, in Theorem 1.1 as shown
below. Let /7={B, ---,B.} be a fundamental subset consisting of real
roots and A=({B, BY))};-.- We put l:=rank A and ¢:=rank A, then
clearly, t<l and t<m.

Proposition 2.1. There exists a basis {h,}i¥ U{v,}7= of b, such that
the presentation matriz R of the standard invariant form (-|-) on g(4)
with respect to this basis is of the form
J, O O O
o O0,., O I,

o o J, oY

o I,., O O,

where I,,_, is the identity matriz of degree m—t, O, _, is the zero matrix
of degree m—t, J,=diag(+1, £1, - -, £1): t X t-matriz, and J,=diag(+1,
+1, ..., +1): NXN-matriz with N :=@2n—10)—2m—1t)(>0).

Now let §,:=> 1, Ch,+ > "¢ Cv;,. Then, we have the following.

Proposition 2.2. The triple (G, {:| 9o}, {BYY1) is a realization of
the GCM A.

Let § be a subalgebra of g(4) generated by E., F, 1<r<m), and the
above f),. Then, we see from Theorem 1.1 that § is canonically isomorphic
t> a Kac-Moody algebra g(4). Moreover, we can prove the following
theorem thanks to the construction of ), in such a detailed way as above.

Theorem 2.1. Let gCg(A) be a regular subalgebra constructed from
the above §,. Put B:=((8;|B))7";-1 and D:=diag@/(B:|B)s -+ 2/(Bn|Bw)s
where (- |-) is the fixed standard invariant form on g(A). Then, the re-
striction of (-|-) to §Cg(A) coincides with a standard invariant form on
g, which is canonically identified with g(A).

This standard invariant form on g=g(4) is determined by the follow-

R=

ing:
(F1) (Y| :={Bi ky-2/(B|B) (heh,1ZKi<m),

(F2) W|W):=0 (W,h"e3 "t Cv),

(F3) (=z,yl|)=(x|ly,2D) (x,v,2€0).

Here this form, viewed from g(4), corresponds to the decomposition A= DB
and to a complementary subspace > 7=/ Cv, to >, CgY in §,.
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We denote by 47¢ (resp. 4'™) the set of all real (resp. imaginary) roots
of g(4). Correspondingly, we denote by 47¢ (resp. 4'™) the set of all real
(resp. imaginary) roots for the root system 4 of g(A). Then, we have the
following as a direct consequence of Theorem 2.1.

Theorem 2.2. For the root system 4 of g(A) (=0), regarded as a root
subsystem of 4, we have

dre=AdN e, A =d4N 4.

§3. Type of the GGCM A= ({8, BNtk

3.1. Some generalities. As an application of Theorem 2.1, we obtain
the following theorem.

Theorem 3.1. Let A=(a,,);;., be a GCM of affine type, and II=
(B} be a fundamental subset of 4. Put A:=((B;, BYD)*:k. Then, we
have either of the following two cases:

Case (a). [T is contained in 47¢, and A is a direct sum of GCM’s of
finite type or of affine type. Moreover, the number of direct summands of
affine type is at most one.

Case (b). 1 contains exactly one imaginary root, and A is a direct
sum of the zero matrixz O, of degree 1 (with multiplicity one) and GCM’s
of finite type.

Remark 3.1. Note that the derived algebra of the Lie algebra g(O,)
associated to the 1 x1 GGCM O, is a Heisenberg Lie algebra ([8, Chap. 2]).

Contrary to this affine case, we have the following example for hyper-
bolic case.

Example 3.1. Let A be a 3x3-matrix given below. Then A is a
GCM of hyperbolic type with the Dynkin diagram below.

2 -2 0
A=[——2 2 —1], O0& O0——0.

0 —1 2
Put B :=(ryr)(a), Bi=r(B), and B :=r,(p), where 7, is a fundamental
reflection defined by a simple root a, € 4 1 <i<3). Put Il :={B,, f fs}C 4.
Then, /I is a fundamental subset. The corresponding GCM A and its
Dynkin diagram are as follows.

2 -2 =2 (14,14)

A— [—2 2 _14], OWO .
-2 14 2 0O

Obviously, 4 is neither of finite type, of affine type, nor of hyperbolic
type. (See [4] for a similar example.)

3.2. Case of affine type GCM. In this subsection, we assume that
the GCM A=(a,,)},-, is of non-twisted affine type (cf. [3, Chaps. 4 and 6]).
So, there exists d=(a,)!_, such that A6=0 and a, e Z,, for all ¢ (0<i<D).
Such a ¢ is unique under the condition that a, (0<<i<l) are relatively prime.
We take such a 4, and also denote > ! ,a,a, by . Then, we know the fol-
lowing facts:
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A" ={ko; ke Z\{0}}, A e={r+kd; TeA keZy,
where 4 is the root system of the finite type Kac-Moody algebra g(A)cg(4)
associated to the principal submatrix A: :=(a,)} ;.. of A. Note that the
removed vertex 0 of the Dynkin diagram of A is so chosen that a,=1 and
the type of A is X, when the type of A is XY (X=A,B, ---,G). Here we
have the following theorem.

Theorem 3.2. Let A=(a,,). ., be a GCM of non-twisted affine type.
Then, the Dynkin diagram of the GGCM A corresponding to a fundamental
subset II of 4 is of type either O,, X, +X,,+ - - +X,, XO+X, +-- - +X,,
Xc1+X1)+ +X::,: s, O7 X51+X:2+ -+ X, where X:;"“ng‘l‘ 4+ X,
is the type of Dynkin dzagmm of the GCM corresponding to a fundamental
subset of the root system 4 of g(A)

Conversely, for each of the above types, there exists a fundamental
subset of 4 whose Dynkin diagram is of that type.

Here X,, is the type of a finite type GCM of rank t;, and O, denotes
also the type of 1 x1 GGCM O,.

Note that when A is of non-twisted affine type, Case (b) in Theorem
3.1 does not happen except for the trivial case that I consists of only one
imaginary root. Owing to the above theorem, we can determine all the
types of regular subalgebras (= the types of the GGCM’s corresponding to
fundamental subsets of 4) of the non-twisted affine Lie algebra g(4). This
is because those of the finite dimensional simple Lie algebra g(A) are com-
pletely determined (see [2, Chap. II, §5]).

Remark 3.2. Also in the case of twisted affine type GCM, but not of
type AP (I1>1), the sufficiency part (the second part) of Theorem 3.2 is true.
Here note that for the GCM A=(a,,)} ., of type A, 1>3), D?, (1>2), B
or D, the type of A:(au)ﬁ, ;-1 18 Cy, B, F,, or G,, respectively.
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