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§1. Introduction. Let M,, be the moduli space of SU(2) monopoles
associated with Yang-Mills-Higgs and Bogomol’nyi equations. It is shown
[1] that M . 18 homeomorphic to the space of based holomorphic maps of
degree k from S? to St.

More generally we define F'#(S?, CP™) to be the space of based holomor-
phic maps of degree k from S* to CP™.

Segal [3] studied the connection between F¥(S?, CP™) and Q:CP™. The
result is as follows

Theorem 1 [3]. The inclusion

i: F¥(S% CP")—0:CP™
18 o homotopy equivalence up to dimension k(2m—1), the induced homomor-
phism iy n (FF(S?, CP™)—n,(2,CP™) is bijective for q<k@m—1) and sur-
jective for q=k(2m—1).

It is well know [2] that ||, 23CP™ has natural loop sum and C, structure.

Recently Boyer and Mann [1] introduced loop sum and C, structure in
11 F¥(S? CP™ which are compatible with the inclusion ¢. Hence we can
naturally define the loop sum and the Dyer-Lashof operation Q, in @®.H,
(F¥(S*, CP™); Zy).

By using these methods, Boyer and Mann produced certain elements in
H (F}S* CP™); Z,) some of which have degree greater than k(2m—1). (cf.
Theorem 1.)

Then the following question arises naturally.

Question. Are the elements produced by the loop sum and the Dyer-
Lashof operation from ¢, , (4.., Will be defined later) the basis of
H . (F¥(S*, CP™); Z,)?

We shall study this question. The results are as follows. We write
F¥ for F¥(S?, CPY).

Theorem A. The elements produced by the loop sum and the Dyer-
Lashof operation from ¢ are the basis of H (F¥; Z,).

Theorem B. For m>=2, the elements produced by the loop sum and
the Dyer-Lashof operation from ¢, _, are the basis of H(F¥§(S* CP™); Z,).

Theorem C. For m=2, the elements produced by the loop sum and
the Dyer-Lashof operation from ¢,_, are the basis of H (F§(S*, CP™) ; Z,).

Theorem D. For m=k+1, the elements produced by the loop sum
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and the sum and the Dyer-Lashof operation from ¢, _, are the basis of H,
(F¥(S?, CP™); Zy).

If we regard a function belonging to F} as a holomorphic function f:
S:—8* of degree k such that f(co)=1 then F} can be described in the fol-
lowing form.

F;:_—.{p(z) _ 2ttt
q() b4 4D,

Similarly we can assume F'#(S%, CP™) as follows.

F¥(S?, CP™ ={[py(2), p:(2), - - -, Pu(2)]; D(2) are monic polynomials of de-
gree k such that there exists no o« € C which satisfies p,(0)=0, p(a)=
0, -, Pu(a)=0.}

Then it is clear that F¥(S?, CP™) is homotopically equivalent to S*"-1,

Before proving our results, we review the results of [1]. As for H,
(Q*CP™; Z,), the following is well known.

Proposition 2 [2].

H, (Q*CP™; Z,)=Z)[ts,-1, QII(ZZm—l)]®ZZ[Z]
where Q; (Zrm-1)=@: - - Qi(Zan_1) (I, has length 1 and 1 is an any element of N)
and i,,_, 18 the mod 2 reduction of the generator of H,, (Q:CP™; Z)=ry,_,
(QiCP™=Z.

Let ¢,_, be the generator of H,,_,(F#(S* CP™); Z,)=Z, By operating
the loop sum and Q;, to «,_,, we obtain elements in H, (F¥(S*, CP™); Z,).
Then by using Proposition 2, we can easily prove the following proposition.

Proposition 3. Let ¢ be an element of H (23CP™; Z,) for q<k@2m—1),
then we can construct an element ¢ of H (F¥(S*, CP™); Z;) by the loop sum
and the Dyer-Lashof operation from ¢, _, such that i.{=¢.

In § 2 we shall prove Theorem A and in § 3 we shall prove Theorem D
in the case k=3. The proof of Theorems B, C and Theorem D in the case
k=4 are omitted. .

§2. Proof of Theorem A. In the following, all cohomology group
and compact support cohomology group are assumed to be modulo 2 coeffi-
cients.

We define R: Ff—C* as follows. Let p(2)/q(2) be an element of F¥
and let a,, «; be the roots of p(z), i, B; be the roots of q(z). Then R(p(2)/q(2))
is defined by [],,,(a;—p,). LetY,be R-'(1). Then it is shown in [3] that
R: F¥—C¥* is a fiber bundle with simply connected fiber Y,.

First we shall compute H*(Y,). We define the closed subspace Y, of Y,
as follows.

; p(2) and q(z) have no common root.}

Y,={__§EZ; eY,; q() has a multiple root.}
Because of the exact sequence
co o —HUY,—Y)—>H(Y)—>H{(Y)—>HI"(Yy— Y )—>- - -
it will be enough to compute H*(Y,—Y,) and H¥(Y,). Here H} denotes the
compact support cohomology.

Assertion 1. Y, is homeomorphic to C* || C*.
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Let C, be the space of ordered distinct 2-tuples in C. We think of C*
as {(&,, &) € (CX)*; &&,=1}. N

Assertion 2. Y,—Y, is the quotient of C*X C, by a free action of the
symmetric group 2,.

Now by using the compact support cohomology exact sequence and the
Poincaré duality, we see

q — Z, Q=0, 2
H(Y:)= {0 otherwise.

By using the Serre spectral sequence of the above fiber bundle, we can
prove Theorem A.

§3. Proof of Theorem D in the case k=3. We write X, for F§(S,
CP™). To prove Theorem D in the case k=3, it will be enough to determine
Hy(X,) for ¢<9 by Theorem 1 and Proposition 3. We define the closed sub-
space X, of X, and the closed subspace X, of X, as follows.

X, ={[ps(2), - - -, Pn(2)]; Do(2) has a multiple root.}
X, ={[p(2), - - -, Pu(2)]; Do(2) has a triple root.}

Assertion 1. X, is homotopically equivalent to S*»-,

Assertion 2. X,—X, is homotopically equivalent to (S***)?x S'.

By using the compact support cohomology exact sequence of the pair of
spaces (X,, X,), we see H4(X,)=0 for ¢<9.

Let G, be the space of ordered distinet 3-tuples in C.

Assertion 3. X,—X, is homotopically equivalent to (S*™*)*X s, C,.

. 4 ( Qem—113 sy [Z, q=6m—3, 6m—2

Assertion 4. HY((S"™")’X 5, Cg)—{o g=6m—1.

Assertion 4 is proved by using the Serre spectral sequence of the follow-
ing fiber bundle and the fact [2] H*(C,/2,) =H*(S").

(8™ 1P——>(S™ 1) X 4, Ci—>Cy/ 3,

Theorem D in the case k=3 can be deduced from the compact support

cohomology exact sequence of the pair of spaces (X;, X,).
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