20. Minimal Currents and Relaxation of Variational Integrals on Mappings of Bounded Variation

By Patricio AVILES* and Yoshikazu GIGA**

(Communicated by Kôsaku YOSIDA, M. J. A., March 12, 1990)

1. Introduction and main results. Let T be a 1-dimensional current of locally finite mass on \mathbb{R}^n. By the Riesz representation theorem T is identified with a \mathbb{R}^n-valued Radon measure $T=(T^1, \ldots, T^n)$ on \mathbb{R}^n (see e.g., [5,12]). If $F=F(y, \eta)$ is a nonnegative continuous function on $\mathbb{R}^n \times \mathbb{R}^n$ and is positively homogeneous of degree one in η, a new measure $F(y, T)$ is associated with T (cf. [10]). We consider a functional

$$I_\rho(T) = \int_{\mathbb{R}^m} F(y, T).$$

Here F is assumed to be convex in η and satisfy a growth condition

$$k|\eta| \leq F(y, \eta) \leq K|\eta|$$

with $K \geq k > 0$ independent of y and η. If T is a current representing an oriented C^1 curve C, $I_\rho(T)$ is the length of the curve C with metric density F, so $I_\rho(T)$ agrees with the standard length of C in \mathbb{R}^n when $F(y, \eta) = |\eta|$.

We call S a minimal current from $a \in \mathbb{R}^n$ to $b \in \mathbb{R}^n$ if

$$I_\rho(S) = \inf \{I_\rho(T) ; T \in \mathcal{H}_k, \partial T = \delta_a - \delta_b \}.$$

Here δ_a denotes the Dirac measure supported at a and ∂T denotes the boundary of T, i.e. $\partial T = \text{div} T$. The space \mathcal{H} represents the set of all 1-currents of locally finite mass in \mathbb{R}^n. Our main result on minimal currents asserts that a shortest curve is a minimal current.

Theorem 1. There exists a current representing a simple Lipschitz curve from a to b which is a minimal current. In particular,

$$\inf_{\mathcal{H}} I_\rho(T) = \inf \left\{ \int_0^1 F(\gamma(t), \dot{\gamma}(t))dt ; \gamma : [0, 1] \rightarrow \mathbb{R}^m \right\}$$

is Lipschitz and $\gamma(0) = a, \gamma(1) = b \} \quad (\dot{\gamma} = d\gamma/dt).$

If $F(y, \eta)$ is independent of y, we have proved in [2, Lemma 8.3] that the straight line from a to b is a minimal current. Theorem 1 has important applications in relaxations of variational integrals on $BV(\Omega, \mathbb{R}^n)$, the set of mapping $u : \Omega \rightarrow \mathbb{R}^m$ of bounded variation, where Ω is an open set in \mathbb{R}^n.

We consider a functional \mathcal{D} of C^1 mapping $u : \Omega \rightarrow \mathbb{R}^m$

$$\mathcal{D}(u) = \int_\Omega f(x, u(x), F u(x))dx.$$

The density function $f=f(x, y, \xi)$ we discuss here is a nonnegative continuous function in $\Omega \times \mathbb{R}^m \times \mathbb{R}^m$ and convex in ξ. Here the Jacobi matrix $F u(x)$ of u at x is identified with an element of \mathbb{R}^m. We do not assume homoge-

* Department of Mathematics, University of Illinois, Urbana, USA.
** Department of Mathematics, Hokkaido University.
nuity but a growth condition

\[k|\xi| \leq f(x, y, \xi) \leq K(|\xi| + 1). \]

Under these conditions it is well-known that the recession function

\[f_\infty(x, y, \xi) = \lim_{t \to 0} f(x, y, \xi/t) \]

exists and has the homogeneity in \(\xi \) as well as all other properties of \(f \). For technical reasons we further assume the following equicontinuity. For every \((x_0, y_0) \in \Omega \times \mathbb{R}^m\) and \(\varepsilon > 0 \) there is \(\delta > 0 \) such that \(|x - x_0|, |y - y_0| < \delta \) implies

\[|f(x, y, \xi) - f(x_0, y_0, \xi)| \leq \varepsilon (1 + |\xi|). \]

Let \(\overline{\mathcal{F}} \) be the lower semicontinuous \(L^1_{\text{loc}} \) relaxation of \(\mathcal{F} \) on \(BV(\Omega, \mathbb{R}) \), that is

\[\overline{\mathcal{F}}(u) = \inf \{ \lim_{i \to \infty} \mathcal{F}(u_i); \ u_i \to u \text{ in } L^1_{\text{loc}}(\Omega, \mathbb{R}) \text{ and } u_i \text{ is } C^1 \}. \]

Our problem is to find an explicit representation of \(\overline{\mathcal{F}} \) for \(u \in BV(\Omega, \mathbb{R}) \). This question is posed by De Giorgi [4]. When \(f \) does not depend on \(y \) this problem is solved by [6, 8, 10]. If \(f \) depends on \(y \), so far only the cases \(m = 1 \) and \(n = 1 \) were settled by [3] and [11], respectively.

We shall answer to this problem for arbitrary \(n, m \geq 1 \) assuming that \(f \) satisfies an isotropy condition

\[f(x, y, (\xi_i)) \geq f(x, y, \left(\sum_{i=1}^{n} q_i \xi_i \right)), \]

where \(q = (q_1, \ldots, q_n) \in \mathbb{R}^n \) and \(\xi = (\xi_i) \in \mathbb{R}^m \), \(1 \leq i \leq n, 1 \leq j \leq m \). For \(u \in BV(\Omega, \mathbb{R}) \) it is well-known [5, 7, 12] that \(\nabla u \) is a (matrix) Radon measure decomposed as

\[\nabla u = \nabla u|_{\Omega_0} + \nabla u|_{(\Omega - \Omega_0 - \Sigma)} + \nu \otimes (u^+ - u^-) \mathcal{H}^{n-1}|_{\Sigma}. \]

Here \(\Sigma \) denotes the set of jump discontinuities of \(u \) and \(\nu \) represents a unit normal to \(\Sigma \). The functions \(u^\pm \) are the trace of \(u \) on \(\Sigma \) defined by \(u^\pm(x) = \lim_{\tau \to \pm 0} u(x \pm \tau \nu(x)) \) and \(\mathcal{H}^{n-1} \) denotes the \(n-1 \) dimensional Hausdorff measure.

By \(\mu|_A \) we mean a measure on \(\Omega \) defined by \((\mu|_A)(B) = \mu(A \cap B) \) for \(B \subset \Omega \), where \(\mu \) is a measure. For \(a, b \in \mathbb{R}^m \) and \(q \in \mathbb{R}^n \) we introduce a distance like function:

\[D_q(a, b, q) = \inf \left\{ \int_0^1 f_\infty(x, \gamma(t), q \otimes \gamma'(t)) dt; \right\} \]

(5)

\[\gamma : [0, 1] \to \mathbb{R}^n \] is Lipschitz and \(\gamma(0) = a, \gamma(1) = b \)

A combination of Theorem 1 and results in [2] yield our main result for relaxation of \(\mathcal{F} \) when \(f \) satisfies all above assumptions. By \(|\mu| \) we mean the total variation measure of \(\mu \) and \(d\mu/d|\mu| \) denotes the Radon-Nikodym derivative.

Theorem 2. For \(u \in BV(\Omega, \mathbb{R}) \) it holds

\[\overline{\mathcal{F}}(u) = \int_{\Omega_0} f(x, u(x), \nabla u(x)) dx + \int_{\Omega - \Omega_0} f_\infty(x, u(x), \frac{d\nabla u}{d|\nabla u|}(x))|\nabla u| \]

(6)

\[+ \int_x D_q(u^+(x), u^-(x), \nu(x)) d\mathcal{H}^{n-1}(x). \]

*** This terminology is due to De Giorgi [4]. It is also called the lower semicontinuous envelope.
In this note we just give a brief sketch of proofs; the details will be published elsewhere.

After this work is completed, we are informed of a recent work of Ambrosio, Mortola and Tortorelli [1] which proves only "\(\geq \)" in (6) of Theorem 2 without (4). Moreover, they show that equality in (6) does not necessarily hold without assuming (4).

2. Discretization and networks. We approximate a current connecting \(a \) and \(b \) by real polyhedral chain (see [5] for the definition).

Lemma 3. Suppose that \(T \in \mathcal{M}_0 \) satisfies \(\partial T = \delta_b - \delta_a \), \(a, b \in \mathbb{R}^n \) and that its total mass \(M(T) \) is finite. There is a sequence of real polyhedral chain \(T_n \in \mathcal{M}_0 \) with \(\partial T_n = \delta_b - \delta_a \) such that \(T_n \) converges weakly to \(T \) and that \(M(T_n) \rightarrow M(T) \) as \(\epsilon \rightarrow 0 \).

Sketch of the proof. We take \(L \in \mathcal{M}_0 \) representing a piecewise linear curve from \(a \) to \(b \) such that \(M(T) = M(L) + M(R) \) with \(R = T - L \). We may assume that \(R \) is smooth by a standard mollification. Since \(\partial R = 0 \), Poincaré’s lemma implies that there is a smooth 2-current \(\Phi \) such that \(R = \partial \Phi \). We next approximate \(\Phi \) by a piecewise linear \(\Psi \) with compact support associated with a simplicial decomposition of a large cube. For simplicity we only discuss the case \(m = 2 \) so that \(\Psi \) is a scalar function. We approximate \(\Psi \) by a piecewise constant function

\[
\Psi(x) = k, \quad \text{if } (k+1)\varepsilon \leq \Psi(x) < k\varepsilon, \quad k: \text{integer}
\]

so that \(\Psi \rightarrow \Psi \) and \(M(\partial \Psi) \rightarrow M(\partial \Psi) \) as \(\varepsilon \rightarrow 0 \). We take \(\theta \in \mathbb{R} \) such that

\[
M(\Psi + \partial \Psi) = M(L) + M(\partial \Psi).
\]

We thus find a desired approximation \(T = L + \partial \Psi \).

Sketch of the proof of Theorem 1. Let \(\{T_j\} \) be a minimizing sequence of (7)

\[\inf \{ I_{\psi}(T); T \in \mathcal{M}_0, \partial T = \delta_b - \delta_a \}. \]

By Lemma 3 we approximate \(T_j \) by a real polyhedral chain \(T_{j, n} \). Let \(P \) denote the support of \(T_{j,n} \). Since \(P \) is regarded as a network, applying the theory of minimal flow problem (see e.g. [9]) to

\[\inf \{ I_{\psi}(T); T \text{ is real polyhedral chain supported in } P \text{ and } \partial T = \delta_b - \delta_a \} \]

we see the infimum is attained at multiplicity one current \(S_{j,n} \), representing a Lipschitz curve from \(a \) to \(b \). By Reshetnyak’s continuity theorem [10] \(M(T_{j,n}) \rightarrow M(T_j) \) with (2) implies \(I_{\psi}(T_{j,n}) \rightarrow I_{\psi}(T_j) \) as \(\epsilon \rightarrow 0 \). We now observe that \(S_{j,n} \) is a minimizing sequence of (7) by taking a subsequence \(\epsilon = \varepsilon_j \rightarrow 0 \) since \(I_{\psi}(S_{j,n}) \leq I_{\psi}(T_{j,n}) \). This proves (3). By a standard compactness argument and (2) we see the infimum of the right hand side of (3) is attained at a simple Lipschitz curve from \(a \) to \(b \).

3. Sketch of the proof of Theorem 2. We shall prove "\(\geq \)" in (6). Let \(\bar{D}_n \) denote

\[\bar{D}_n(a, b, \nu) = \inf \left\{ \int_{\mathbb{R}^n} f(x, y, (S_i)); \partial S_i = \nu(S_i - \delta_a), S_i \in \mathcal{M}_0, 1 \leq i \leq n \right\}. \]

From main results in [2, Theorems 5.1 and 8.1] it follows that

\[\overline{\mathcal{F}}(u) = \int_{\partial \mathcal{H}} f(x, u, \mathcal{H}u) dx + \int_{\partial \mathcal{H} - \mathcal{H}^-} f(x, u, \frac{\partial u}{\partial |\mathcal{H}u|}) |\mathcal{H}u| + \int_{\mathcal{H}^-} \theta(x) d\mathcal{H}^{n-1}(x) \]
with some \(\theta \) satisfying \(\theta(x) \geq \tilde{D}_x(u^-(x), u^+(x), \nu(x)) \).

Applying (4) and Theorem 1 with \(F(y, \eta) = f_\omega(x, y, \nu(x) \otimes \eta) \) in (1) yields
\[
\tilde{D}_x(a, b, \nu) \geq D_\omega(a, b, \nu),
\]
where \(D_\omega \) is defined in (5). We thus prove \(\geq \) in (6).

The converse inequality is proved by approximating \(u \) by piecewise constant functions. We note that this part is independently proved by [1].

References

