83. The Set of Primes Bounded by the Minkowski Constant of a Number Field

By Makoto Ishibashi*)
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1990)

Let k be an algebraic number field with degree $m=r_{1}+2 r_{2} \geqq 2$ and discriminant d_{k}, where (r_{1}, r_{2}) denotes the signature of k. Write $M_{k}=$ $(4 / \pi)^{r_{2}}\left(m!/ m^{m}\right) \sqrt{\left|d_{k}\right|}$ (the Minkowski constant of k) and $M(k)=\{p$; rational prime and $\left.p \leqq M_{k}\right\}$. For every prime number p, let $p O_{k}=P_{1}^{e_{1}} \ldots P_{g}^{e_{g}}$ be the decomposition into prime ideals of O_{k} (where O_{k} denotes the ring of integers in $k, P_{i} \neq P_{j}(i \neq j)$ are distinct prime ideals of $\left.O_{k}\right)$. In general, the prime number p is not necessarily irreducible element in O_{k}. Let $\operatorname{Irr}\left(O_{k}\right)$ be the set of all irreducible elements in O_{k}. Now we define nine subsets $A_{0}(k), A_{1}(k), \cdots, A_{8}(k)$ of $M(k)$ as follows.

$$
\begin{aligned}
& A_{0}(k)=\left\{p \in M(k) ; g=e_{1}=1 \text { (i.e. } p \text { remains prime in } O_{k} \text {, so) } p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{1}(k)=\left\{p \in M(k) ; g=1, e_{1}=m \text { (i.e. } p \text { is fully ramified), } p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{2}(k)=\left\{p \in M(k) ; e_{1}+\cdots+e_{g} \nsupseteq m, 1 \nsupseteq e_{j} \text { for some } j, p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{3}(k)=\left\{p \in M(k) ; g=m, e_{1}=\cdots=e_{g}=1 \text { (i.e. } p\right. \text { splits completely), } \\
& \left.p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{4}(k)=\left\{p \in M(k) ; g \nsupseteq m, e_{1}=\cdots=e_{g}=1 \text { (i.e. } p \text { is unramified), } p \in \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{5}(k)=\left\{p \in M(k) ; g=1, e_{1}=m \text { (i.e. } p \text { is fully ramified), } p \notin \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{8}(k)=\left\{p \in M(k) ; e_{1}+\cdots+e_{g} \nsupseteq m, 1 \nsupseteq e_{j} \text { for some } j, p \notin \operatorname{Irr}\left(O_{k}\right)\right\} \\
& A_{7}(k)=\left\{p \in M(k) ; g=m, e_{1}=\cdots=e_{g}=1 \text { (i.e. } p\right. \text { splits completely), } \\
& \left.p \notin \operatorname{Irr}\left(O_{k}\right)\right\}
\end{aligned}
$$

$A_{8}(k)=\left\{p \in M(k) ; g \nsupseteq m, e_{1}=\cdots=g_{g}=1\right.$ (i.e. p is unramified), $\left.p \notin \operatorname{Irr}\left(O_{k}\right)\right\}$. Then we have $M(k)=A_{0}(k) \cup A_{1}(k) \cup \cdots \cup A_{8}(k)$ (disjoint union). In case $m=2$, the subsets $A_{2}(k), A_{4}(k), A_{6}(k), A_{8}(k)$ are of course empty.

The following three theorems are variations on the theme of T. Ono [2].
Theorem 1. If $M(k)=A_{0}(k)$, then the class number h_{k} of k is one.
Proof. By the Minkowski lemma, the ideal class group H_{k} of k is generated by the classes of prime ideals over $p \in M(k)$. Hence we have $h_{k}=1$.
Q.E.D.

Lemma 1. Let $a O_{k}=Q_{1} \cdots Q_{n}$ be the decomposition into prime ideals $\left(Q_{1}, \cdots, Q_{n}\right.$ are not necessarily distinct, $\left.a \in O_{k}\right)$. Suppose that Q_{i} belongs to an ideal class $x_{i} \in H_{k}(1 \leqq i \leqq n)$ and x_{0} denotes the principal class of H_{k}. Then a is an irreducible element in O_{k} if and only if $x_{i_{1}} \cdots x_{i_{m}} \neq x_{0}$ for every proper subset $\left\{i_{1}, \cdots, i_{m}\right\}$ of $\{1, \cdots, n\}$.

Proof. See Lemma 1.2 in Czogala [1].
Q.E.D.

Theorem 2. If $\#\left(A_{1}(k) \cup A_{3}(k)\right) \geqq 1$, then $h_{k} \geqq m=(k: Q)$.

[^0]Proof. Assume that $p \in M(k) \cap \operatorname{Irr}\left(O_{k}\right)$ and $p O_{k}=P_{1}^{e_{1}} \ldots P_{g}^{e_{0}}$. By Lemma 1, the ideals $P_{1}, P_{1}^{2}, \ldots, P_{1}^{e_{1}}, P_{1}^{e_{1}} P_{2}, \cdots, P_{1}^{e_{1}} P_{2}^{e_{2}}, \ldots, P_{1}^{e_{1}} P_{2}^{e_{2}} \ldots P_{g=1}^{e_{g}-1} P_{g}, \cdots, P_{1}^{e_{1}} P_{2}^{e_{2}}$ $\cdots P_{g-1}^{e_{g-1}} P_{g}^{e_{g}}$ are non-equivalent. Hence we have $e_{1}+\cdots+e_{g} \leqq h_{k}$. Therefore, $p \in A_{1}(k) \cup A_{3}(k)$ implies $e_{1}+\cdots+e_{g}=m$. This completes our proof.
Q.E.D.

Theorem 3. Let V_{m} be the family of all algebraic number fields k with a fixed degree m and $M_{k} \geqq 3$. For each $k \in V_{m}$, write $d_{k}=(-1)^{r_{r}} p_{p 1}^{e_{1}} \cdots$ $p_{s(k)}^{s_{(t)}(t) p_{s(k)+b_{1}}^{f_{1}} \cdots p_{s(k)}^{f_{t(t)}}+b_{t(k)}}$, where p_{j} denotes j-th rational prime $(j=1,2, \cdots)$ and $p_{s(k)} \leqq M_{k}<p_{s(k)+1}\left(b_{1}<\cdots<b_{t(k)}\right)$. Suppose that $W_{m}=\left\{k \in V_{m} ; e_{s(k)-1} \geqq 1\right.$ and $\left.e_{s(k)} \geqq 1\right\}$. Then W_{m} is a finite set.

Proof. From Tschebysheff's theorem (i.e. $\left.p_{j+1}<2 p_{j}\right)$ and $p_{s}+2 b \leqq p_{s+b}$ ($b \geqq 1, s \geqq 2$), it follows that

$$
\left(m!/ m^{m}\right)^{2} p_{1}^{e_{1}} \cdots p_{s(t)}^{e_{s}^{e}(t)}\left(p_{s(k)}+2 b_{1}\right)^{f_{1}} \cdots\left(p_{s(k)}+2 b_{t(k)}\right)^{f_{t(k)}}<4 p_{s(k)}^{2} .
$$

Hence we have

Thus $s(k), t(k), e_{j}(1 \leqq j \leqq s(k)), f_{j}(1 \leqq j \leqq t(k)), b_{1}, \cdots, b_{t(k)}$ are bounded. Therefore, the absolute values of $d_{k}\left(k \in W_{m}\right)$ are bounded from above by a positive constant (independent of k, and only dependent on m). Since there exist only finitely many number fields with a fixed given discriminant, we know that W_{m} is a finite set.
Q.E.D.

References

[1] Czogala, A.: Arithmetical characterization of algebraic number fields with small class number. Math. Zeit., 176, 247-253 (1981).
[2] Ono, T.: A problem on quadratic fields. Proc. Japan Acad., 64A, 78-79 (1988).

[^0]: *) 1-27-10 Kitahara-cho, Tanashi-shi, Tokyo 188.

