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10. A Remark on Exponentially Bounded C-semigroups

By Isao Mi1YADERA and Naoki TANAKA
Department of Mathematics, Waseda University

(Communicated by Késaku YosIpA, M. J. A., Feb. 13, 1990)

1. Introduction. Let X be a Banach space with norm ||-|. We denote
by B(X) the set of all bounded linear operators from X into itself.

Let C be an injective operator in B(X). A family {S(¢); t=0} in B(X)
is called an exponentially bounded C-semigroup (hereafter abbreviated to
C-semigroup) on X, if
1.1) S(s+HC=S(s)S(t) for s, t=0 and S(0)=C,

1.2) S(.): [0, o0)—X is continuous for z ¢ X,
(1.3) there are M =0 and a=0 such that ||S(t)|< Me* for ¢=0.

The generator A of a C-semigroup {S(t); t=0} on X is defined by
1.4) {D(A)={w e X; lim,_,,(S@®x—Cx)/t € R(C)}

Azx=C"'lim,_,,(S@)x—Cx)/t for x e D(A),
where R(C) denotes the range of C. It is known ([6, Proposition 1.1]) that
(1.5) A is a closed linear operator in X and A=C-'AC.

The purpose of this note is to prove

Theorem 1. The following statements are equivalent.

(I) A is the generator of a C-semigroup on X.

D) (ay) A is a closed linear operator in X satisfying C-*AC=A.

(ay) There exists a Banach space 3 with norm N(.) such that R(C)cXcCX,
lz|<M,N(x) for xe 3, N(x)<M,||C-'z| for x € R(C) and the part of A in 2
is the generator of a semigroup of class (C,) on 2, where M,, i=1, 2, are
nonnegative constants.

Corollary 2. Let A be a closed linear operator in X, ¢ € p(A) (the re-
solvent set of A) and let n=0 be an integer. Then the following statements
are equivalent.

(I') A isthe generator of an n-times integrated semigroup on X.

(II') A is the generator of a C-semigroup on X with C=R(c; A)",
where R(c; A)=(c—A)".

(I11") There exists a Banach space 2 with norm N(.) such that D(A™)
cycX, |z|EMN@) for xeX, N(x) < M2 ,|A*z|| for xe D(A™) and
the part of A in 2 is the generator of a semigroup of class (C,) on X, where
M,, 1=1, 2, are nonnegative constants.

This corollary improves upon [4, Corollary 5.3].

2. Proofs. Let {S(#); t=0} be a C-semigroup on X satisfying (1.3)
and let b>a. We define a linear subset 2 of X and a norm N(.) on 2 by
2.1) X={reX;C-'S(t)x is continuous in t=0 and lim,_ e *|C-'S()x||=0},
(2.2) N(x)=sup,s, e *||C'S@)x| for x e X,
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respectively. It is easy to see the following (2.3)-(2.6):
(2.3) R(S(t))c2 for t=0, in particular R(C)C2;
(2.4) X becomes a Banach space under the norm N(-);
(2.5) ||z||IE€N(x) for x € 2 and N(@)< M| C-'x| for xz € R(C);
(2.6) 2 is invariant under C-!S(¢) for ¢ =0, and
C-'SEC'SH)x=C-'S(s+t)x forxeld and s, t=0.
For each ¢ =0 we define a linear operator T(¢): 3—2X by
T@®)x=C-*S(t)x for x e 2.

Let A be the generator of {S(¢); t=0} and let A; be the part of A in 3.
Then we have

Proposition 3. {T(t); t=0} is a semigroup of class (C,) on the Banach
space X satisfying N(T@®)x) < e N(x) for xeX and t =0, and A; is the
generator of the semigroup {T(t); t=0}.

Proof. Clearly, T(0)=1I|, (the identity on %), T'(s+t)=T()T(®) for
s, t=0 and N(T(t)x) =sup,s.e*°||C-'S(s+t)z| < e N(x) for x € 2 and t=0.
Let x ¢ Y. Since e ?*C-'S(f)x is uniformly continuous in >0, we obtain that
N(T(h)x—2x)=sup,s, ¢ *||C~'SEt+ )z —C-'SE)x || <sup,s, || e *“* P C'SE+h)x
—e MC 1S ||+ (e**—1)N(x)—0 as h—0+. Therefore {T'(t); t=0} is a
semigroup of class (C,) on %.

Let % be the generator of the semigroup {T'(t); t=0}. Ifx e D), then
IC ' SHx—x)/t—Az | <N(TH)x—x)/t—Ax) —0 as t—0+, which implies
that x e D(A) N2 and Ax=Ax € 2, i.e., x € D(Ay) and Azz=Ux. Therefore
ACA;. Toshow D(A,)C D), let x € D(A) and Ax e 2. Since S(t)z—Cz=

AJ‘ S(s)z ds and AS(H)y=St)Ay for =0, ze X and y € D(A) (see [6, Propo-

0

sition 1.2] or [1, Lemmas 2.7 and 2.8]), we see that S(t)x—Cx=r S(s)Azds
0

—C j ‘C-18(s)Ax ds and then T(t)x—x:IzT(s)Ax ds for t=0. Since T(-)Aw:
0 0

[0, c0)—2Y is continuous, we obtain N((T'(t)x —x)/t— Ax)—0 as t—0+ which
means z € D(Y). Therefore D(A;)={x e D(A)N2; Ax e Z}C{x e D(A); Ax

e 2}cDQD. Q.E.D.
Remark 4. 1) The argument above shows that D(A;)={x e D(4);
Az e}

2) T@W)Cx=C-'St)Cx=8(t)x for x ¢ X and £=0, because of R(C)C2.

Proof of Theorem 1. By (1.5), (2.3), (2.5) and Proposition 3, (I) implies
(IT). To show that (II) implies (1), let A; be the partof A in ¥ and let {T'(¥);
t=>0} be the semigroup of class (C,) on 2 generated by A;.

For each t=0 we define a linear operator S(¢) : X—X by

S@Ax=T{#)Cx for x e X.

Then we have

IS@z|EMNT@)Cx) M Ke* N(Cx) < KM, M,e**| x| for x € X and t=0,
where K and o are nonnegative constants such that N(T(£)2) < Ke*'N(z) for
ze2 and £=0. Clearly, S(-): [0, )—X is continuous for x € X. Since
A; is the generator of the semigroup {T'(t); t=0} of class (C,), it is known
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that (l—A;)“z:Iwe“*‘T(t)z dt for zeX and 12>w. (For example, see [3,
0
chapter XI].) Since R(C)C2Y and C|; € B(Y), we obtain
@7 (—Ay)Co— J e *T(t)Cx dt for x € X and 1>,
0

(2.8) CO—Ay)z= f “e-*CT(t)z dt for ze Y and 1>w.
0

Moreover we have

2.9 C(a—A;'2=Q—A;)'Cz for ze 2 and 1> w.

In fact, let ze X and i>w. From A=C'AC and R(C)c2 it follows that
C(A—Ay)'zeDAN2Y and ACA—A,) '2=CA(A—A,) 2=CA,(A—A;)'z2=
AC(2—Ay)-'2—Cze 2. Therefore C(A—A;)'2e D(A;) and A;C(A—A;) 'z=
AC(A—A;)"'2—Cz, which implies (2.9). It follows from (2.7)-(2.9) that

re'“(T(t)Cz—CT(t)z) dt=0 for z ¢ 3 and 1>w. By the uniqueness theorem
0

for Laplace transforms we get
TH)Cz=CT®)z for ze 3 and £>0.
This implies that S(S)SE)x=T()CT#®)Cx=T(s+t)C*x=S(s+t)Cx for x e X
and s, t=0. Therefore {S(f); t=0} is a C-semigroup on X.
Let B be the generator of the C-semigroup {S(f); t=0} on X. It is

known that C-*BC=B and (2—B)“Cx=r e *S@)x dt for xe X and 1> w.

0

(See [6, Propositions 1.1 and 1.2] or [1, Lemma 2.9].) It follows from (2.7)
that
(2100 1—A)'Cx=(QA—B)"'Cx for xr ¢ X and 1> w.
Hence 1—B)"'C(A—A)x =(1—A) 'CA—A)xr =(A—A,)"'(1—A;)Cx=Cx for
x € D(A) and 1> w, which implies Ax=C-'BCx=Bux for x € D(A), i.e., ACB.
(We have used here that A=C-'AC and C(D(A))CcD(4;).) By (2.10) again,
(A—Ay)~'C(a—B)x=(—B)~'C(2—B)x=Cx for x € D(B), which implies Bx=
C-*ACx=Ax for x € D(B), i.e., BCA. Thus A is the generator of the C-
semigroup {S(?); {=0}. Q.E.D.

Proof of Corollary 2. By [2, Theorem 2.4], (I') is equivalent to (II").
To show that (IT) is equivalent to (II1’), we use Theorem 1 with C=R(c; 4)".
By AR(c; A)x=R(c; A)Ax for z € D(A), we see that AcC'AC. Next if
2 e D(C-'AC), then Cx=R(c; A)C(cx—C'ACx)=CR(c, A)(cx —C-'ACx) and
hence z=R(c; A)(cx—C'ACx) € D(A). Therefore we obtain A=C"'AC.
Moreover, x—{|(¢c —A)"2||(=|/C-'«|) defines a norm on D(A") which is equiva-
lent to the graph norm > 7_.[|4A*x|| on D(A"). The result follows from
Theorem 1. Q.E.D.

3. Application. We start with

(a) Representation of C-semigroups. Let{S(?);{t=0}be a C-semigroup
on X. If A is the generator of {S(¢); t=0} then

(3.1 S@a=lim,..(1—t4/n)"Ca=lim, e 37, TEA=D " ¢,
n.
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for x ¢ X and the limit is uniform in ¢ on every bounded interval. In par-
ticular, if R(C) is dense in X then we have [5, Theorems 1.2 and 1.3].

In fact, Let 2, N(.), T(t) and A; be as in Proposition 3. By the theory
of semigroups of class (C,), T(t) can be represented as follows (see [3] or [8]):
For every ze2X, T()z=N(.)—lim,_,(1—tA;/n) "2=N(-)—lim, . e *> =,
@ 2*(A—Az) " /nz (=N(-)—lim,_,, exp (t2AA;(1—A;)")z) uniformly in ¢=0
on every bounded interval, where N(-)-lim means the limit with respect to
N(-)-norm. Noting T@#)Cx=S(#)x for x € X and t=0 (see Remark 4), we
obtain (8.1). If R(C) is dense in X, then 1—G)-"Cx=(1—A) "Czx for x € X,
1>a and n=0, where G is the c.i.g. of {S(¢); £=0}. Therefore [5, Theorems
1.2 and 1.3] follows from (3.1).

(a,) The abstract Cauchy problem. Let A be the generator of a C-
semigroup {S(f); t=0} on X satisfying (1.3). Then for every x e D(4;),
u(t, ©)=C-'S(t)x is a unique solution to the abstract Caucy problem
(ACP; A, z) (d/dtyult, x)=Aut, x) for t=0 and u(0, x)==x.

In fact, let T'(t) and A; be as in Proposgition 8. The conclusion follows
from the fact that T'(¢)x is a unique solution to (ACP; 4;, x) for x € D(4;)
by the theory of semigroups of class (C,).

Since (1—A)'C(X)cD(A;) for 2> a, the result above improves upon [7,
Corollary 1.3]. (We note here that C(D(4))C(1—A4)-'C(X) and that C(D(A))
=(—A)'C(X) if and only if 2¢€ p(4).)

(a;) Generation of C-semigroups. Applying Theorem 1 we can prove
the following generation theorem of a C-semigroup (see [6, Theorem 2.1]):
Let A be a densely defined closed linear operator in X such that 2—A4 is in-
jective, D((A—A)-™"DR(C), |A—A)"C|EM|QA—a)"(A>a, m=1) and C-'AC
=A. Then A is the generator of a C-semigroup on X.
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