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10. A Remark on Exponentially Bounded C.semigroups

By Isao MIYADERA and Naoki TANAKA
Department of Mathematics, Waseda University

(Communicated by K6saku YOSIDA, M. ff.A., Feb. 13, 1990)

1. Introduction. Let X be a Banach space with norm II" II. We denote
by B(X) the set of all bounded linear operators from X into itself.

Let C be an injective operator in B(X). A family {S(t); t0} in B(X)
is called an exponentially bounded C-semigroup (hereafter abbreviated to
C-semigroup) on X, if
(1.1) S(s+t)C=S(s)S(t) or s, t>=0 and S(0)=C,
(1.2) S(.)" [0, oo)--X is continuous orx e X,
(1.3) there are M=0 and a>=O such that IIS(t)ll=Mea for t_>__0.

The generator A of a C-semigroup {S(t) t >___0) on X is defined by

(1.4) D(A)--{x e X; limto+(S(t)x-Cx)/t e R(C)}
[Ax--C- limto+(S(t)x-Cx)/t forx e D(A),

where R(C) denotes the range of C. It is known ([6, Proposition 1.1]) that
(1.5) A is a closed linear operator in X and A=C-AC.

The purpose of this note is to prove
Theorem 1. The following statements are equivalent.
(I) A is the generator of a C-semigroup on X.
(II) (41) A is a closed linear operator in X satisfying C-1AC=A.

(42) There exists a Banach space X with norm N(.) such that R(C)cXcX,
I]xl]<_MiN(x) for x e , N(x)<_M.IIC-xll for x e R(C) and the part of A in
is the generator of a semigroup of class (Co) on , where M., i=1, 2, are
nonnegative constants.

Corollary 2. Let A be a closed linear operator in X, c e p(A) (the re-
solvent set of A) and let n>=O be an integer. Then the following statements
are equivalent.

( I’ ) A is the generator of an n-times integrated semigroup on X.
(II’) A is the generator of a C-semigroup on X with C=R(c A),

where R(c A)=(c--A) -.
(III’) There exists a Banach space 2 with norm N(.) such that D(AD

cvcX, Ilxll<_M,N(x) for xe2, N(x)<=MX=o]lAxl] for xeD(AD and
the part of A in 2 is the generator of a semigroup of class (Co) on , where
M, i=1, 2, are nonnegative constants.

This corollary improves upon [4, Corollary 5.3].

2. Proofs. Let {S(t); t>__0} be a C-semigroup on X satisfying (1.3)
and let b> a. We define a linear subset 2 of X and a norm N(.) on 27 by
(2.1) ={xeX;C-S(t)x iscontinuousintO and lime-lC-S(t)xl=O},
(2.2) N(x)=sup_oe-]lC-S(t)xll for x
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respectively.
(2.3)
(2.4)
(2.5)
(2.6)

It is easy to see the following (2.3)-(2.6)"
R(S(t))$ for t >__0, in particular R(C)X
X becomes a Banach space under the norm N(.);
I]x ]=<N(x) or x e 27 and N(x)<=M]]C-xl or x e R(C);
27 is invariant under C-S(t) for t>=0, and

C-’S(s)C-S(t)x=C-’S(s+t)x orx e2; and s, t>___0.
For each t0 we define a linear operator T(t)" X--X by

T(t)x=C-S(t)x or x e
Let A be the generator of {S(t);t>=O} and let Az be the part o A in
Then we have

Proposition :. (T(t); t0} is a semigroup of class (Co) on the Banach
space X satisfying N(T(t)x) e N (x) for x e $ and t >=0, and Az is the
generator of the semigroup {T(t) t

Proof. Clearly, T(0) I[ z (the identity on 2:), T(s+ t) T(s) T(t) or
s, t0 and N(T(t)x)=sup_oe-llC-S(s+t)x]l<=etN(x) or x e X and t0.
Let x e 2:. Since e-*C-’S(t)x is uniformly continuous in t0, we obtain that
N(T(h)x--x)=supt_o eTM IC-S(t+ h)x-C-S(t)xl sup,_0
--e-*C-S(t)xll+(e-l)N(x)-+O as h-0+. Therefore {T(t); t0} is
semigroup of class (Co) on 2;.

Let be the generator of the semigroup {T(t) t0}. If x e D(), then
(C-S(t)x-x)/t-?Ix I<__N((T(t)x--x)/t--Ix)-+O as toO+, which implies
that x e D(A) X nd Ax=?x X, i.e., x e D(Ar.) nd Ar.x=x. Therefore
?IcAz. To show D(Az)D(), let x e D(A) and Axe $. Since S(t)z-Cz=

A[o S(s)z ds and AS(t)y---S(t)Ay for t0, z e X and y e D(A) (see [6, Propo-

sition 1.2] or [1, Lemmas 2.7 and 2.8]), we see that S(t)x-Cx=[*o S(s)Axds
=C[oC-S(s)Axds nd then T(t)x--x=foT(s)Ax ds or t0. Since T(.)Ax"

[0, c)--27 is continuous, we obtain N((T(t)x--x)/t--Ax)-+O as toO+ which
means x e D(). Therefore D(Az)={x e D(A) X Ax e X}c{x e D(A) Ax
e X}D(). Q.E.D.

Remark 4. 1) The argument above shows that D(Az)---{x e D(A);
Ax e X}.

2) T(t)Cx--C-S(t)Cx=S(t)x or x e X and t.:>0, because of R(C)cX.
Proof of Theorem 1. By (1.5), (2.3), (2.5) and Proposition 3, (I) implies

(II). To show that (II) implies (I), let A be the part of A in X and let {T(t)
t0} be the semigroup of class (Co) on X generated by Az.

For each t =>0 we define a linear operator S(t)" X--+X by
S(t)x T(t)Cx or x e X.

Then we have
IS(t)xIIMN(T(t)Cx)MKeN(Cx)<=KMMeIlxll or x e X and t0,

where K and are nonnegative constants such that N(T(t)z)<=KeN(z) for
z e 2: and t>_0. Clearly, S(.)" [0, c)-+X is continuous for x e X. Since

Az is the generator of the semigroup {T(t) t__0} o class (Co), it is known
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that (]--A)-z--.loe-T(t)z dt for z e 27 and >. (For example, see [3,

chapter XI].) Since R(C))L’ and CI e B(X), we obtain

(2.7) (,--Az)-Cx--.[e-T()Cx d or x e Z and

(2.8) C(-A)-z .[: dt for zeXand>e-’CT(t)z

Moreover we have
(2.9) C(,--Az)-z=(,-Az)-Cz orz e X and 2w.
In fct, let z e X nd . From A=C-AC and R(C)X it follows that
C(,--A)-z e D(A) X nd AC(-Az)-z=CA(-A)-z=CAz(--Az)-z=
C(2--A)-z-Cz e X. Therefore C(]-Az)-z e D(Az) and AC(2-Az)-z=
C(-Az).-z-Cz, which implies (2.9). It follows from (2.7)-(2.9) that

) dt=O for 2: and. the uniqueness theoremz By

for Laplace transforms we get
T(t)Cz=CT(t)z or z e 2; and t0.

This implies that S(s)S(t)x T(s)CT(t)Cx T(s+ t)Cx-:- S(s+ t)Cx for x e X
and s, t0. Therefore {S(t) t0} is a C-semigroup on X.

Let B be the generator of the C-semigroup {S(t);t>=O} on X. It is

known that C-BC--B and (--B)-Cx=[ e-S(t)x dt for x e X and w.
(See [6, Propositions 1.1 and 1.2] or [1, Lemma 2.9].) It follows from (2.7)
that
(2.10) (,--A)-’Cx=(2--B)-Cx for x e X and 2)

Hence (,--B)-C(,--A)x (,--Az)-C(,-A)x (,-Az)-(,-Az)Cx=Cx for
x e D(A) nd w, which implies Ax=C-BCx=Bx for x e D(A), i.e., A B.
(We hve used here that A=C-AC and C(D(A))D(A). By (2.10)again,
(--A)-C(,--B)x (-- B)-’C(2-- B)x Cx or x e D(B), which implies Bx
C-ACx=Ax for x e D(B), i.e., BcA. Thus A is: the generator of the C-
semigroup {S(t) t0}. Q.E.D.

Proof of Corollary 2. By [2, Theorem 2.4], (I’) is equivalent to (II’).
To show that (II’) is equivalent to (III’), we use Theorem I with C=R(c A).
By AR(c A)x R(c A)Ax for x e D(A), we see that A
x e D(C-’AC), then Cx=R(c; A)C(cx--C-ACx)=CR(c, A)(cx-C-ACx) and
hence x=R(c A)(cx--C-ACx) e D(A). Therefore we obtain A=C-AC.
Moreover, x--t (c--A)xll(=llC-x I) defines a norm on D(A) which is equiva-
lent to the graph norm =ollAxlon D(A). The result follows rom
Theorem 1. O.E.D.

:. Application. We start with

() Representation of C-semigroups. Let {S(t) t0} be a C-semigroup
on X. If A is the generator of {S(t) t0} then

(3.1) S(t)x=lim(1--tA/n)-Cx=lim e- ::0 t2(--A)- Cx
n!
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for x e X and the limit is uniform in t on every bounded interval. In par-
ticular, if R(C) is dense in X then we have [5, Theorems 1.2 and 1.3].

In fact, Let X, N(.), T(t) and Az be as in Proposition 3. By the theory
of semigroups of class (Co), T(t) can be represented as follows (see [3] or [8])"

AtFor every z e ’, T(t)z=N(.)--lim (1--tA/n) z N(.) lirn e- n=o
(t2(--A)-/n !)z (=N(.)--lim exp (tAz(--A)-gz) uniformly in t0
on every bounded interval, where N(.)-lim means the limit with respect to
N(.)-norm. Noting T(t)Cx=S(t)x or x e X and t>0 (see Remark 4), we
obtain (3.1). If R(C) is dense in X, then (--G)-Cx=(-A)-nCx orx e X,
a and n>=0, where G is the c.i.g, of {S(t) t>__0}. Therefore [5, Theorems
1.2 and 1.3] ollows rom (3.1).

(a) The abstract Cauchy problem. Let A bethe generator o a C-
semigroup {S(t); t>_0} on X satisfying (1.3). Then or every x e D(Az),
u(t, x)--C-S(t)x is a unique solution to the abstract Caucy problem
(ACP; A, x) (d/dt)u(t, x)=Au(t, x) for t_0 and u(O, x)=x.

In fact, let T(t) and A be as in Proposition 3. The conclusion ollows
from the act that T(t)x is a unique solution to (ACP; A, x) or x e D(A)
by the theory of semigroups of class (Co).

Since (2-- A)-C(X) cD(A) for 2a, the result above improves upon [7,
Corollary 1.3]. (We note here that C(D(A))(-A)-C(X) and that C(D(A))
=(2--A)-C(X) if and only if 2 e p(A).)

(a) Generation of C-semigroups. Applying Theorem 1 we cn prove
the following generation theorem of a C-semigroup (see [6, Theorem 2.1])"
Let A be a densely defined closed linear operator in X such that 2--A is in-
jective, D((--A)-)R(C), (,--A)-CI <=M/(--a)(>a, m>=l) nd C-AC
--A. Then A is the generator of a C-semigroup on X.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8] K. Yosida"

R. deL.aubenfels: C-semigroups and the Cauchy problem. J. Funct. Anal. (to
appear).

----: Integrated semigroups, C-semigroups and the abstract Cauchy problem.
Semigroup Forum (to appear).

E. Hille and R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math.
Soc. Colloq. Publ., 31 (1957).

F. Neubrander." Integrated semigroups and their applications to the abstract
Cauchy problem. Pacific J. Math., 13S, 111-155 (1988).

N. Tanaka: On the exponentially bounded C-semigroups. Tokyo. J. Math., 10,
107-117 (1987).

N. Tanaka and I. Miyadera: Exponentially bounded C-semigroups and integrated
semigroups, ibid., 1’.2, 99-115 (1989).

----: C-semigroups and the abstract Cauchy problem (preprint).
Functional Analysis. Springer-Verlag (1978).


