## 10. A Remark on Exponentially Bounded C-semigroups

By Isao MIYADERA and Naoki TANAKA Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1990)

1. Introduction. Let X be a Banach space with norm  $\|\cdot\|$ . We denote by B(X) the set of all bounded linear operators from X into itself.

Let C be an injective operator in B(X). A family  $\{S(t); t \geq 0\}$  in B(X) is called an *exponentially bounded C-semigroup* (hereafter abbreviated to C-semigroup) on X, if

- (1.1) S(s+t)C = S(s)S(t) for  $s, t \ge 0$  and S(0) = C,
- (1.2)  $S(\cdot): [0, \infty) \rightarrow X$  is continuous for  $x \in X$ ,
- (1.3) there are  $M \ge 0$  and  $a \ge 0$  such that  $||S(t)|| \le Me^{at}$  for  $t \ge 0$ . The *generator A* of a *C*-semigroup  $\{S(t); t \ge 0\}$  on *X* is defined by

(1.4) 
$$\begin{cases} D(A) = \{x \in X; \lim_{t \to 0+} (S(t)x - Cx)/t \in R(C)\} \\ Ax = C^{-1} \lim_{t \to 0+} (S(t)x - Cx)/t & \text{for } x \in D(A), \end{cases}$$

where R(C) denotes the range of C. It is known ([6, Proposition 1.1]) that (1.5) A is a closed linear operator in X and  $A = C^{-1}AC$ .

The purpose of this note is to prove

Theorem 1. The following statements are equivalent.

- (I) A is the generator of a C-semigroup on X.
- (II) (a<sub>1</sub>) A is a closed linear operator in X satisfying  $C^{-1}AC = A$ .
- (a<sub>2</sub>) There exists a Banach space  $\Sigma$  with norm  $N(\cdot)$  such that  $R(C) \subset \Sigma \subset X$ ,  $\|x\| \leq M_1 N(x)$  for  $x \in \Sigma$ ,  $N(x) \leq M_2 \|C^{-1}x\|$  for  $x \in R(C)$  and the part of A in  $\Sigma$  is the generator of a semigroup of class  $(C_0)$  on  $\Sigma$ , where  $M_i$ , i=1, 2, are nonnegative constants.

Corollary 2. Let A be a closed linear operator in X,  $c \in \rho(A)$  (the resolvent set of A) and let  $n \ge 0$  be an integer. Then the following statements are equivalent.

- ( I' ) A is the generator of an n-times integrated semigroup on X.
- (II') A is the generator of a C-semigroup on X with  $C=R(c;A)^n$ , where  $R(c;A)=(c-A)^{-1}$ .
- (III') There exists a Banach space  $\Sigma$  with norm  $N(\cdot)$  such that  $D(A^n) \subset \Sigma \subset X$ ,  $||x|| \leq M_1 N(x)$  for  $x \in \Sigma$ ,  $N(x) \leq M_2 \Sigma_{k=0}^n ||A^k x||$  for  $x \in D(A^n)$  and the part of A in  $\Sigma$  is the generator of a semigroup of class  $(C_0)$  on  $\Sigma$ , where  $M_i$ , i=1, 2, are nonnegative constants.

This corollary improves upon [4, Corollary 5.3].

- 2. Proofs. Let  $\{S(t); t \ge 0\}$  be a *C*-semigroup on *X* satisfying (1.3) and let b > a. We define a linear subset  $\Sigma$  of *X* and a norm  $N(\cdot)$  on  $\Sigma$  by
- (2.1)  $\Sigma = \{x \in X ; C^{-1}S(t)x \text{ is continuous in } t \ge 0 \text{ and } \lim_{t \to \infty} e^{-bt} ||C^{-1}S(t)x|| = 0\},$
- (2.2)  $N(x) = \sup_{t\geq 0} e^{-bt} ||C^{-1}S(t)x|| \text{ for } x \in \Sigma,$

respectively. It is easy to see the following (2.3)–(2.6):

- (2.3)  $R(S(t)) \subset \Sigma$  for  $t \ge 0$ , in particular  $R(C) \subset \Sigma$ ;
- (2.4)  $\Sigma$  becomes a Banach space under the norm  $N(\cdot)$ ;
- (2.5)  $||x|| \le N(x)$  for  $x \in \Sigma$  and  $N(x) \le M ||C^{-1}x||$  for  $x \in R(C)$ ;
- (2.6)  $\Sigma$  is invariant under  $C^{-1}S(t)$  for  $t\geq 0$ , and

$$C^{-1}S(s)C^{-1}S(t)x = C^{-1}S(s+t)x$$
 for  $x \in \Sigma$  and  $s, t \ge 0$ .

For each  $t \ge 0$  we define a linear operator  $T(t): \Sigma \to \Sigma$  by

$$T(t)x = C^{-1}S(t)x$$
 for  $x \in \Sigma$ .

Let A be the generator of  $\{S(t); t \ge 0\}$  and let  $A_{\Sigma}$  be the part of A in  $\Sigma$ . Then we have

Proposition 3.  $\{T(t); t \ge 0\}$  is a semigroup of class  $(C_0)$  on the Banach space  $\Sigma$  satisfying  $N(T(t)x) \le e^{bt} N(x)$  for  $x \in \Sigma$  and  $t \ge 0$ , and  $A_{\Sigma}$  is the generator of the semigroup  $\{T(t); t \ge 0\}$ .

*Proof.* Clearly,  $T(0) = I|_{\Sigma}$  (the identity on  $\Sigma$ ), T(s+t) = T(s)T(t) for  $s, t \ge 0$  and  $N(T(t)x) = \sup_{s \ge 0} e^{-bs} \|C^{-1}S(s+t)x\| \le e^{bt} N(x)$  for  $x \in \Sigma$  and  $t \ge 0$ . Let  $x \in \Sigma$ . Since  $e^{-bt}C^{-1}S(t)x$  is uniformly continuous in  $t \ge 0$ , we obtain that  $N(T(h)x-x) = \sup_{t \ge 0} e^{-bt} \|C^{-1}S(t+h)x-C^{-1}S(t)x\| \le \sup_{t \ge 0} \|e^{-b(t+h)}C^{-1}S(t+h)x-C^{-1}S(t)x\| + (e^{bh}-1)N(x) \to 0$  as  $h \to 0+$ . Therefore  $\{T(t); t \ge 0\}$  is a semigroup of class  $(C_0)$  on  $\Sigma$ .

Let  $\mathfrak A$  be the generator of the semigroup  $\{T(t): t \ge 0\}$ . If  $x \in D(\mathfrak A)$ , then  $\|(C^{-1}S(t)x-x)/t-\mathfrak Ax\| \le N((T(t)x-x)/t-\mathfrak Ax) \to 0$  as  $t \to 0+$ , which implies that  $x \in D(A) \cap \Sigma$  and  $Ax = \mathfrak Ax \in \Sigma$ , i.e.,  $x \in D(A_{\Sigma})$  and  $A_{\Sigma}x = \mathfrak Ax$ . Therefore  $\mathfrak A \subset A_{\Sigma}$ . To show  $D(A_{\Sigma}) \subset D(\mathfrak A)$ , let  $x \in D(A)$  and  $Ax \in \Sigma$ . Since  $S(t)z - Cz = A\int_0^t S(s)z \, ds$  and AS(t)y = S(t)Ay for  $t \ge 0$ ,  $z \in X$  and  $y \in D(A)$  (see [6, Proposition 1.2] or [1, Lemmas 2.7 and 2.8]), we see that  $S(t)x - Cx = \int_0^t S(s)Ax \, ds = C\int_0^t C^{-1}S(s)Ax \, ds$  and then  $T(t)x - x = \int_0^t T(s)Ax \, ds$  for  $t \ge 0$ . Since  $T(\cdot)Ax : [0, \infty) \to \Sigma$  is continuous, we obtain  $N((T(t)x - x)/t - Ax) \to 0$  as  $t \to 0+$  which means  $x \in D(\mathfrak A)$ . Therefore  $D(A_{\Sigma}) \equiv \{x \in D(A) \cap \Sigma; Ax \in \Sigma\} \subset \{x \in D(A); Ax \in \Sigma\} \subset D(\mathfrak A)$ .

Remark 4. 1) The argument above shows that  $D(A_{\Sigma}) = \{x \in D(A); Ax \in \Sigma\}.$ 

2)  $T(t)Cx = C^{-1}S(t)Cx = S(t)x$  for  $x \in X$  and  $t \ge 0$ , because of  $R(C) \subset \Sigma$ .

*Proof of Theorem* 1. By (1.5), (2.3), (2.5) and Proposition 3, (I) implies (II). To show that (II) implies (I), let  $A_{\Sigma}$  be the part of A in  $\Sigma$  and let  $\{T(t); t \geq 0\}$  be the semigroup of class  $(C_0)$  on  $\Sigma$  generated by  $A_{\Sigma}$ .

For each  $t \ge 0$  we define a linear operator  $S(t): X \rightarrow X$  by

$$S(t)x = T(t)Cx$$
 for  $x \in X$ .

Then we have

 $||S(t)x|| \le M_1 N(T(t)Cx) \le M_1 K e^{\omega t} N(Cx) \le K M_1 M_2 e^{\omega t} ||x||$  for  $x \in X$  and  $t \ge 0$ , where K and  $\omega$  are nonnegative constants such that  $N(T(t)z) \le K e^{\omega t} N(z)$  for  $z \in \Sigma$  and  $t \ge 0$ . Clearly,  $S(\cdot) : [0, \infty) \to X$  is continuous for  $x \in X$ . Since  $A_{\Sigma}$  is the generator of the semigroup  $\{T(t) : t \ge 0\}$  of class  $(C_0)$ , it is known

that  $(\lambda - A_{\Sigma})^{-1}z = \int_{0}^{\infty} e^{-\lambda t} T(t)z \ dt$  for  $z \in \Sigma$  and  $\lambda > \omega$ . (For example, see [3, chapter XI].) Since  $R(C) \subset \Sigma$  and  $C|_{\Sigma} \in B(\Sigma)$ , we obtain

$$(2.7) \quad (\lambda - A_{\Sigma})^{-1}Cx = \int_{0}^{\infty} e^{-\lambda t} T(t)Cx \ dt \ \text{for } x \in X \text{ and } \lambda > \omega,$$

(2.8) 
$$C(\lambda - A_{\Sigma})^{-1}z = \int_{0}^{\infty} e^{-\lambda t} CT(t)z \ dt \text{ for } z \in \Sigma \text{ and } \lambda > \omega.$$

Moreover we have

(2.9)  $C(\lambda - A_{\Sigma})^{-1}z = (\lambda - A_{\Sigma})^{-1}Cz$  for  $z \in \Sigma$  and  $\lambda > \omega$ .

In fact, let  $z \in \Sigma$  and  $\lambda > \omega$ . From  $A = C^{-1}AC$  and  $R(C) \subset \Sigma$  it follows that  $C(\lambda - A_{\Sigma})^{-1}z \in D(A) \cap \Sigma$  and  $AC(\lambda - A_{\Sigma})^{-1}z = CA(\lambda - A_{\Sigma})^{-1}z = CA_{\Sigma}(\lambda - A_{\Sigma})^{-1}z = \lambda C(\lambda - A_{\Sigma})^{-1}z - Cz \in \Sigma$ . Therefore  $C(\lambda - A_{\Sigma})^{-1}z \in D(A_{\Sigma})$  and  $A_{\Sigma}C(\lambda - A_{\Sigma})^{-1}z = \lambda C(\lambda - A_{\Sigma})^{-1}z - Cz$ , which implies (2.9). It follows from (2.7)–(2.9) that  $\int_{0}^{\infty} e^{-it}(T(t)Cz - CT(t)z) \ dt = 0 \text{ for } z \in \Sigma \text{ and } \lambda > \omega. \text{ By the uniqueness theorem for Laplace transforms we get}$ 

$$T(t)Cz = CT(t)z$$
 for  $z \in \Sigma$  and  $t \ge 0$ .

This implies that  $S(s)S(t)x = T(s)CT(t)Cx = T(s+t)C^2x = S(s+t)Cx$  for  $x \in X$  and  $s, t \ge 0$ . Therefore  $\{S(t); t \ge 0\}$  is a C-semigroup on X.

Let B be the generator of the C-semigroup  $\{S(t); t \ge 0\}$  on X. It is known that  $C^{-1}BC = B$  and  $(\lambda - B)^{-1}Cx = \int_0^\infty e^{-\lambda t} S(t) x \ dt$  for  $x \in X$  and  $\lambda > \omega$ . (See [6, Propositions 1.1 and 1.2] or [1, Lemma 2.9].) It follows from (2.7) that

(2.10)  $(\lambda - A_{\Sigma})^{-1}Cx = (\lambda - B)^{-1}Cx$  for  $x \in X$  and  $\lambda > \omega$ .

Hence  $(\lambda - B)^{-1}C(\lambda - A)x = (\lambda - A_{\Sigma})^{-1}C(\lambda - A)x = (\lambda - A_{\Sigma})^{-1}(\lambda - A_{\Sigma})Cx = Cx$  for  $x \in D(A)$  and  $\lambda > \omega$ , which implies  $Ax = C^{-1}BCx = Bx$  for  $x \in D(A)$ , i.e.,  $A \subset B$ . (We have used here that  $A = C^{-1}AC$  and  $C(D(A)) \subset D(A_{\Sigma})$ .) By (2.10) again,  $(\lambda - A_{\Sigma})^{-1}C(\lambda - B)x = (\lambda - B)^{-1}C(\lambda - B)x = Cx$  for  $x \in D(B)$ , which implies  $Bx = C^{-1}ACx = Ax$  for  $x \in D(B)$ , i.e.,  $B \subset A$ . Thus A is the generator of the C-semigroup  $\{S(t); t \geq 0\}$ .

Proof of Corollary 2. By [2, Theorem 2.4], (I') is equivalent to (II'). To show that (II') is equivalent to (III'), we use Theorem 1 with  $C = R(c; A)^n$ . By AR(c; A)x = R(c; A)Ax for  $x \in D(A)$ , we see that  $A \subset C^{-1}AC$ . Next if  $x \in D(C^{-1}AC)$ , then  $Cx = R(c; A)C(cx - C^{-1}ACx) = CR(c, A)(cx - C^{-1}ACx)$  and hence  $x = R(c; A)(cx - C^{-1}ACx) \in D(A)$ . Therefore we obtain  $A = C^{-1}AC$ . Moreover,  $x \to \|(c - A)^n x\| (= \|C^{-1}x\|)$  defines a norm on  $D(A^n)$  which is equivalent to the graph norm  $\sum_{k=0}^n \|A^k x\|$  on  $D(A^n)$ . The result follows from Theorem 1.

## 3. Application. We start with

(a<sub>1</sub>) Representation of C-semigroups. Let  $\{S(t); t \ge 0\}$  be a C-semigroup on X. If A is the generator of  $\{S(t); t \ge 0\}$  then

$$(3.1) \quad S(t)x = \lim_{n \to \infty} (1 - tA/n)^{-n} Cx = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{t^n \lambda^{2n} (\lambda - A)^{-n}}{n!} Cx$$

for  $x \in X$  and the limit is uniform in t on every bounded interval. In particular, if R(C) is dense in X then we have [5, Theorems 1.2 and 1.3].

In fact, Let  $\Sigma$ ,  $N(\cdot)$ , T(t) and  $A_{\Sigma}$  be as in Proposition 3. By the theory of semigroups of class  $(C_0)$ , T(t) can be represented as follows (see [3] or [8]): For every  $z \in \Sigma$ ,  $T(t)z = N(\cdot) - \lim_{n \to \infty} (1 - tA_{\Sigma}/n)^{-n}z = N(\cdot) - \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} (t^n \lambda^{2n} (\lambda - A_{\Sigma})^{-n}/n!)z$  ( $= N(\cdot) - \lim_{\lambda \to \infty} \exp(t\lambda A_{\Sigma}(\lambda - A_{\Sigma})^{-1})z$ ) uniformly in  $t \ge 0$  on every bounded interval, where  $N(\cdot)$ -lim means the limit with respect to  $N(\cdot)$ -norm. Noting T(t)Cx = S(t)x for  $x \in X$  and  $t \ge 0$  (see Remark 4), we obtain (3.1). If R(C) is dense in X, then  $(\lambda - \overline{G})^{-n}Cx = (\lambda - A)^{-n}Cx$  for  $x \in X$ ,  $\lambda > a$  and  $n \ge 0$ , where  $\overline{G}$  is the c.i.g. of  $\{S(t); t \ge 0\}$ . Therefore [5, Theorems 1.2 and 1.3] follows from (3.1).

(a<sub>2</sub>) The abstract Cauchy problem. Let A be the generator of a C-semigroup  $\{S(t); t \ge 0\}$  on X satisfying (1.3). Then for every  $x \in D(A_x)$ ,  $u(t, x) = C^{-1}S(t)x$  is a unique solution to the abstract Caucy problem (ACP; A, x) (d/dt)u(t, x) = Au(t, x) for  $t \ge 0$  and u(0, x) = x.

In fact, let T(t) and  $A_{\Sigma}$  be as in Proposition 3. The conclusion follows from the fact that T(t)x is a unique solution to (ACP;  $A_{\Sigma}$ , x) for  $x \in D(A_{\Sigma})$  by the theory of semigroups of class  $(C_0)$ .

Since  $(\lambda - A)^{-1}C(X) \subset D(A_{\Sigma})$  for  $\lambda > a$ , the result above improves upon [7, Corollary 1.3]. (We note here that  $C(D(A)) \subset (\lambda - A)^{-1}C(X)$  and that  $C(D(A)) = (\lambda - A)^{-1}C(X)$  if and only if  $\lambda \in \rho(A)$ .)

(a<sub>3</sub>) Generation of C-semigroups. Applying Theorem 1 we can prove the following generation theorem of a C-semigroup (see [6, Theorem 2.1]): Let A be a densely defined closed linear operator in X such that  $\lambda - A$  is injective,  $D((\lambda - A)^{-m}) \supset R(C)$ ,  $\|(\lambda - A)^{-m}C\| \leq M/(\lambda - a)^m (\lambda > a, m \geq 1)$  and  $C^{-1}AC = A$ . Then A is the generator of a C-semigroup on X.

## References

- [1] R. deLaubenfels: C-semigroups and the Cauchy problem. J. Funct. Anal. (to appear).
- [2] —: Integrated semigroups, C-semigroups and the abstract Cauchy problem. Semigroup Forum (to appear).
- [3] E. Hille and R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math. Soc. Colloq. Publ., 31 (1957).
- [4] F. Neubrander: Integrated semigroups and their applications to the abstract Cauchy problem. Pacific J. Math., 135, 111-155 (1988).
- [5] N. Tanaka: On the exponentially bounded C-semigroups. Tokyo J. Math., 10, 107-117 (1987).
- [6] N. Tanaka and I. Miyadera: Exponentially bounded C-semigroups and integrated semigroups. ibid., 12, 99-115 (1989).
- [7] —: C-semigroups and the abstract Cauchy problem (preprint).
- [8] K. Yosida: Functional Analysis. Springer-Verlag (1978).