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1. Introduction.
region contained in R.
fined on D. We denote by R the set o all n n. real matrices.
an n-dimensional vector Vf(x) and an n n matrix H(x) by

Vf(x) (f(x) x) (l__</<__n)
and

H(x)=(f(x)/xx) (1_], kn).
For any x e R, we shall use the norms x and x]l defined by

respectively.
a.re defined as

Let x--(x, x,..., x,) be a vector in R and D a
Let f(x) be a real-valued nonlinear unction de-

Define

l_i<:n i---1

The corresponding matrix norms, denoted by IIAII and tlAII.,

IIA I=max )a,] and )A ,=2/,
l<i_n j=l

respectively, where A--(a)eR, and is the maximum eigenvalue of
A’A, A* being the transposed matrix of A. We also define the matrix
norm A ll by

In ths ection, we shII sume the me condition (A.1)=(A,) in
[8 except o (A.1).

(A.1) ?() three time continuousI dientible on D.
(A.E) hee exist oint D isin V()=0.
(A.3) The n n symmetric matrix H() is positive definite.
(A.4) is a constant satisfying 0 2.

We see that f(x) has a local minimum at by conditions (A.1)-(A.3). For
computational purpose, we have proposed in [5, (2.1)] an iteration method

(1.1) x(+" =x()- Vf(x())

for finding x under conditions (A.1)-(A.4).
As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a

ormula, which is called the Aitken-Steffensen formula. Now, we have
studied the above Aitken-Steffensen formula for systems of nonlinear equa-
tions in [2], [3] and [4], and shown [2, Theorem 2], [3, Theorem 2] and [4,
Theorem 1].
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The purpose of this paper is to construct a ormula by use of (1.1),
which we shall also call an Aitken-Steffens.en formula, and to show Theo-
rem 1 by using [2, Theorem 2].

2. Statement of results. Define an n-dimensional vector g(x)-(g(x))
by

(2.1) g(x)=x- ’f(x).

Given x() e R, define x() e R (i-- 1, 2, by
x(/)=g(x()) (i=O, 1, 2, ...).

Put d()= x()- or i--0, 1, 2, ..., and then define an n n matrix D by

D (d(), d( ), ., d( /-)).
In addition to conditions (A.1)-(A.4), we suppose the ollowing two

conditions (A.5) and (A.6) which are based on [2, Theorem 2].
(A.5) The vectors, d(), d(/), ...,d(/-), k-0,1,2, ...,are linearly

independent.
(A.6)

As suggested by [2, (1.5)], we can construct an Aitken-Steffensen ormula
(2.2) y()=x()--AX()(AX())-x() (k=0, 1, 2, ...),
where an n-dimensional vector Ax(), and nn matrices AX() and AX
are given by

and

LCB() (+ i) (:)

zX(k) (x(+l) x(/

d’-X() AX(+ ,)

In this paper, we shall show the following
Theorem 1. Under conditions (A.1)-(A.6), for x() e U(;), there

exists a constant M such that the following property

holds for sufficiently large k.
3. Proof of Theorem 1. We shall prove Theorem 1.

0 < (e, H()e)----< H()[[
By (A.3),

for any peR with ][pl[.=l. Since, by (A.1), ][H(x) is continuous at
every point x e D, there exists a. neighbourhood

such that x e U( ) implies ]]H(x)]] > 0. Then, we observe that, by (A.1),
(3.1) g(x) (lign) are two times continuously differentiable on U(; ),
and, rom (2.1), by (A.2),
(3.2) =g(),
while we have shown in [5] that the ollowing inequality
(3.3) G()II, < I
holds rom (A.3) and (A.4), where G(x)=(ag(x)/ax,) (1i, ]n). Choosing

a constant M so as to satisfy G()], M (1, we see, by (A.1), that there
exists a constant such that U(; )cU(; ) and ]]G(x)]M or x e
U(;). By (1.1), (2.1) and (3.2),
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(3.5)
(3.6)
(3.7)
and
(3.8)

x(/) --__ g(x()) g()

=.[i +
We note that +t(x()-) e U( 3) (0gtgl), provided x() e U( ). Then,
by G(x)]] M or x e U( 3) shown above,

Io G(+t(x( )) dtM
holds, so that we have
(3.4) x(+)- xMlx()

or x() e U( ).
For the proof o Theorem 1, we need the ollowing well-known rela-

tions.
n-/[xig[x[gxl[ or all xeR,
I] I ] 1 or the identity matrix I e R,
A[,g A ][u for all A e R

n-nltAIl<=llAllgn/llAll for allAeR.
Now, we recall that conditions (A.1)-(A.4) imply (3.1), (3.2) and (3.3) as
shown above. Then applying the argument in the proof of [2, Theorem 2]
to the norms Ilxll and IIAII instead of the norms x and IIAII, respectively,
and using (3.4), (3.5), (3.6), (3.7) and (3.8), we deduce that, or x() e U(; c),
there exists a constant M such that

holds for sufficiently large k. In this way, we have proved Theorem 1, as
desired.

4. Numerical example. We deal with a function
y(x a, b, c, d)--e(c cos bx+d sin bx) (a 0),

which is the same as in [5]. In order to show the efficiency of the Aitken-
Steffensen ormula (2.2), we consider a system of nonlinear equations,
Example 4.1. The solution of Example 4.1 using the Aitken-Steffensen
2ormula (2.2) is presented in Table 4.1 below, together with the solution
by the iteration method [5, (2.1)].

(y(0.0 a, b, c, d)--1.50,

Example 4.1 y(0.8; a, b, c, d)=--0.05,
y(1.6 a, b, c, d)=--0.12,
y(2.4; a, b, c, d)=0.04.

The solution is (a, b, c, d)=(--1.50, --2.50, 1.50, -0.50).

Table 4.1. Computation results for Example 4.1

Method’s Solutions

Iteration method [5, (2.1) (/--0.99)

Aitken-Steffensen formula (2.2)

(-- 1. 506458, --2. 501487,
1. 499880, --0. 5009617)

(-- 1. 502620, 2. 505557,
1. 499941, O. 5007080)

(a(O), b(), c(), d()) (-1.0, --1.0, --1.0, --1.0)
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