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0. Let F be a field. An extension field K o F is called a (Galois)
quaternion extension of F if KIF is a Galois extension with the Galois
group Gal(K/F) isomorphic to the quaternion group o order 8.

If F is the rational p-adic field Q,, then there exists a Galois quater-
nion extension of F--Q i and only i p----_3 mod 4 or p=2.

In this note, we shall exhibit all quaternion extensions o Q (p3
mod 4 or p=2) in a fixed algebraic closure of Q,.

First, we recall some results in [3].
Lemma ([3]). Let F be a field of characteristic 2 and le a e

(i= 1, 2, 3) with aaa=a for some a e F-F. Let M=F (,,)
be a biquadratic bicyclic extension of F. Let e M--M. Then K=M()
is a quaternion extension of F if and only if

=a with some eF()
(,) aa=aa with some e F(J)

(a=al with some e F()
where a, Gal(M/F) are defined by

Pro.of. Suppose K=M()/F is a quaternion extension. Then,
M():M(), whence aa: with some e M. Since
eF(), has a form a or a with some eF(). If =ae
F(), then K=M()/F() is an abelian extension of type (2.2).
But, since K/F() is a cyclic extension, must have a orm a a, i.e.,
aa=aa:. Similarly, we have a=aa (aeF()),
r()).

Conversely, if the relations (,) hold, then K=M(J)/F is a Galois ex-
tension of degree 8 and the subextensions K/F(J) (i= 1, 2, 3) are all cyclic
of degree 4. Since, as is well known, a finite group of order 8 which con-
tains three cyclic subgroups o.f order 4, is the quaternion group, K=
M(J)/F is a quaternion extension.

Proposition ([3]). Let F be a field of characteristic #2 and let M/F
be a biquadratic bicyclic extension. Suppose that K=F()(for some a e
M) is a quaternion extension of F which contains M.

Then, F() with any r e F is a quaternion extension of F contain.-
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ing M. Conversely, any quaternion extension of F containing M is o.f the
fo.rm F(/) with some r e F.

Furthermore, F(/)=F(/---), r, r e F, if and only if r/r e M.
Proof. If K=F(/--) (=M(/-)) is a quaternion extension o F, then,

by lemma, F(/-r-)=M(/) is a quaternion extension of F containing M.
Conversely, let K’ be any quaternion extension of F containing M.

Then, K’=M(/-fl-) with some e M and, as is seen rom the relations (,),
M(/--) is a Galois extension of F and three extensions M(/--)/F(/-ff()
(i= 1, 2, 3) are all bicyclic. Since a finite group of order 8 which contains
three aelian subgroups o type (2, 2), is an abelian group o type (2, 2, 2),
M(//a)/F is an abelian extension of type (2,2,2). Hence, M(//a) has
the orm M(/-r-) with some r e F, whence M(/-fi)=M(/--).

Therefore, K’=M(/--)=M(/--) F(/-).
Finally, as F(/-r)=M(/-r) (r e r), r(/)=F(/-r&-) (r, r2 e F)

if and only if r/r2 e M.
Now, we state the theorem of Witt [4].
Theorem (Witt). Let F be a field of characteristic :V-2 and let M=

F(/-, /-) (a, b e F) be a biquadratic bicyclic extension of F. Then, M
is embeddable into. a Galois quaternion extension K of F if and only if the
quadratic form ax + by +abz is equivalent over F to x +y+ z.

When this is the case, if

P b abP= 1

with a matrix P=(Ptj) (Pij e F), detP=(ab) -1, then a field
K--F(/r(1+p11/ a +p22/ b +p/ ab ))

(with any r e F) is a quaternion extension of F contaiuing M.
For an elementary proo o this theorem, see the paper [2].
Corollary. If a quadratic extension F(/) of F is embeddable into a

quaternion extension of F, then m is a sum of three squares in F.
1. Let p_----3 (rood4) be a. prime number, p is expressed as a sum o

3 non-zero squares in Z (=the ring of p-adic integers): p=a+b+c,
a, b, c e Zp, abe - O. (For example, 19 1 + 3 + 3, 23 2 + 4 + (/-),
J- e z.)

We put re=p, n=a+b, a=v/-d(v/+v/-)(v/-+a) (in an alge-
braic closure of Q). Then K=Q(v/-) is quaternion extension of Q
which contains the biquadratic field M=Q(/--, /-1, /7--). (cf. [1]).

The field M is the unique biquadratic bicyclic extension of Q which
contains all qua.dratic extensions of Q.

Consequently, we see that, for a.ny r e Q, v/- e Qp(v/--d)_M whence
r e M and, in particular, /, v/ eMa e M.

Therefore, by the proposition in 0, K--Q(v/-) with a given above is
the unique quaternion extension of Q (in a fixed algebraic closure of Q).
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2. For p=2, there exist exactly seven qudra.tic extensions of Q:
Q2(.v- 1), Q(/_+2), Q(/+_ 5), Q2(/ +/- 10).

Since -1 cannot be expressed as a sum of 3 squres in Q, Q(v- 1) is not
embeddable into any quaternion extension o Q. All biqua.dratic bicyclic
extensions of Q which do not contain Q(j-1) a.re Q(, 4),
Q(/-, /- 5), Q(J-, /-2), Q(/-, /-2). Among these fields, by Witt’s
theorem, exactly three fields MI=Q2(, /-5), M2=Q2(v, /-2),
Q(/]6, /-2) are embedda.ble into quaternion extensions of Q. (cf. [2]).
In fa.ct, the ollowing six fields

Q(J__+/-(--+/--)(/2 +1)) M=Q(/-, /-5)=Q(4-, 4-),
Q(/_+j/3(/6 + v-)(j- + 1)) @M=Q(J-, /-2)=Q(, /6 ),

(J +_Jl-(J+/)(/6+))_M=(/, /-2)=t(/, /1)
are the quaternion extensions of Q. (cf. Th. in [1]).

I we denote by M any one o three fields M1, M and Ms, we see that
/-1 e M and, or any r e Q, either /-r-e M or /--e M.

Therefore, hy the proposition in 0, the six fields given a.bove are ex-
actly all quaternion extensions of Q (in a. fixed algebraic closure of Q).
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