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1. Introduction. This paper, a.s a preliminary study for [5], an-
nounces a compa.rison principle for viscosity solutions of singular degen-
erate elliptic equations

( 1 ) u+F(x, u, Vu, Vu)=O in t2 (Iru=grad u, Vu Hessian)
where 9 is a domain (not necessarily bounded) in R. A typical exa.mple
is

(2) u-,u, div (lr[u)--0 (eR).

This equa.tion is derived from the mea.n curva.ture flow equation

(2’) v--Igvldiv I1
=0

by sein (t, )=e() see also [1, ]. The idea. of he proo applies to
pa.rabolie equation in [g], so we om.i he deailed proof since i is easily
seen from he argumen in [g]. The comparison prineiple for viseosity
solutions is established by .G. Crandall and P.L. ions [8] for firs order
equa.tions, by P.L. ions [1], N. Jensen [10], H. Ishii [7] or second order
degenerate elliptic equa.ions (see also [11]), by Y.-G. Chert, Y. Giga. and
S. Goo [1] for singular pa.rabolie equations including he mean eurva.ure
flow euaions (see a.lso [4]). However so far no resus applied for (2) in
an unbounded domain.

Z. Comparison principle. et D be a domain in R no necessarily
bounded. We consider a degenerate elliptic equation of orm
(3) u+F(, u, gu, gu)=O in 9.
In this paper we call a continuous function m" [0, )[0, ) a modul
if m(0)=0 a.nd it is nondecreasing. We first list a.ssumptions on F=
F(x, r, p, X).

(F1) F" J(9)=9XRX(Rk{O})xSR is continuous, where S de-
notes the spa.ce of real nXn symmetric ma.trices.

(F2) F is degenerate elliptic, i.e., F(x, r, p, X+ Y)F(x, r, p, X) in
J(9) f YO.

(F3) -<F.(x, r, O, O)=F*(x, r, O, 0) for all (x,r) egxR,
where F. and F* are, respectively, the lower and upper semicontinuo
relaxation (envelope) of F on J(9), i.e.,

*) In the memory of Professor K.Ssaku YOSIDA, M. ft. A.
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F.(x, r, p, X)--lim inf {F(y, s, q, Y) q:/:O, Ix-Yl_,
0

and F*=-(-F)..
Here IX denotes the operator norm of X as a selfadjoint operator on

Rn
We assume that F is uniformly bounded in a neighborhood of p=0.
(F4) For every R 0

C,=sup {IF(x, r, p, X)] IPl, [XI--R, (x, r, p, X) e J(2), p:/: 0}
is finite.

We assume a kind of monotonicity in r.
(F5) rF(x, r, p, X) is nondecreasing for all (x, r, p, X) e J(9).
(F6) For every Rp0 there is a modulus a=a such that IF(x, r,

p, X)--F(x, r, q, Y)a(p-q+]X- Y) or all (x, r) e R, p p], ]q
R,X],]Y]gR.

The behavior near (p, X)= (0, O) is a.ssumed to be uniform in x and r.

(F7) There are p0 0 and a modulus a such that
F*(x, r, p, X)--F*(x, r, O, O)a(p+[X])
F.(x, r, p, X)--F.(x, r, O, O)--a([p[+[X)

provided that (x, r) e 9 R and ]p], ]X[po.
(FS) There is a modulus a such that

IF(x, r, p, X)-F(y, r, p, X)] ga(x-yl(]p+ 1))
for y e [2, (x, r, p, X) e J(9).

We shall also use the following weaker assumptions in place of (F2),
(F6), (F7) and (F8).

(F9) For every Rp)0 there is a modulus a=a, such that
IF(x, r, p, X)-F(x, r, q,

for all y e , (x, r, p, X) e J(D), OlP, lqR, IXIR.
(F10) There is a modulus a such that

F.(x, r, O, O)-F*(y, r, O, O)-a(x-y l)
for all y e D, (x, r) e e R.

(Fll) Suppose that

Let R be taken so that Rmax(p, 0)+2 with 0=2,+o. Let p be a

positive number. Then it holds
F.(x, r, p, X)--F*(y, r, p, --Y)-e(]x--y](]p]+

for all pg{p]R with some modulus e=e, independent o.f x, y, r, X, Y,

Theorem 2.1. Suppose that F satisfies (F1)-(F8). Let u and v be,
respectively, sub- and supersolutions of (3) in 9. Assume that

(A1) u(x)gK(]x+ 1), v(x)-K(]x+ 1) for some K> 0 independent of
xeg;

(A2) there is a modulus mo such that u*(x)-v.(y)mo([X-y]) for all
(x, y) e (9 9);
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(A3) u*(x)--v.(y)__K(Ix--yl+l) on () for some K 0 independ-
ent of (x, y) e ( ).

Then there is a modulus m such that
(4) u*(x)-v.(y)_m(Ix-yl) on .
In particular u*v. on .

Theorem 2.2. Suppose that F satisfies (F1), (F3)-(F5), (F9)-(Fll).
Let u and v be, respectively, viscosity sub- and supersolutions of (3) in [2.

Assume that (A1)-(A3) hold for u and v. Then there is a modulus m such
that (4) holds.

Remark 2.1. The assumption (F8) has a disadvantage that it excludes
variable coefficients in second order term. Theorem 2.1 is the special case
of Theorem 2.2. Indeed the assumption (F3) and (F8) imply (F10) and
(F2), (F6), (F8) imply (Fll). If F is independent of x, the assumption
(F2) is equivalent to the assumption (Fll).

Example. Let X(x,p) be a bounded function on 9(R\{0}) with
values in the space of nn real matrices. Suppose that is Lipschitz on
0{p e R" [p]_p} for every p>0 and that

F(x, p, X)=-trace (’(x, p)*X(x, p)X).
It is easy to see F satisfies all other assumptions in Theorem 2.2 although
F may not satisfy (F8).

3. A sketch of the proof of Theorem 2.2. We prove Theorem 2.2
in several steps. We will note several propositions to prove Theorem 2.2.
We begin by deriving a rough growth estimate for u(x)--v(y) on

Proposition 3.1. Suppose that (F1) and (F4). Let u and v be, respec-
tively, viscosity sub- and supersolutions of (3) in 9. Assume that u and
--v are upper semicontinuous in 9. Moreover, assume that u and v satisfy
(A1) and (A3). Then for K’>K there is a constant M=M(K’, F) such that
( 5 ) u(x)--v(y)<_K’([x--y[+ 1) on 12

For ,/t) 0 we set
(x, y) w(x, y) (x, y) w(x, y) u(x) v(y)

(x y)= Ix-y]’ +B(x, y), B(x,
4e

The function B plays the role of a barrier for space infinity.
Proposition 3.2. Suppose that u and v satisfy (F5) and that

( 6 ) =lim sup{w(x, y) "lx--yl<O, (x, y) e

Then there are positive constants 6o such that

( 7 ) sup (x, y)>
2

holds for all 06 6o, O.
Proposition ).:. Let u, v, 6o be as in Proposition 3.2. Suppose that

w is upper semicontinuous in .
( ) attains a maximum over ..[2 at (,
(ii) I-? is bounded as a function of 0



No. 8] Comparison Principle for Elliptic Equations 255

(iii) and ?) tend to zero as -+0; the convergence is uniform in
01.

In particular, for fixed 0, and ) are bounded on 0 1.
(iv) I--?)1 tends to zero as 0; the convergence is uniform in 0

o.
(v) limlim ]g’-l =0.

0 0

Proposition 3.4. Assume the hypotheses of Proposition 3.3. Suppose
that (A2) holds for u and v. Then there is o 0 such that attains a maxi-
mum over 2 at an interior point (, ) , i.e., (, ) e for all
0o, 0o.

Proof of Theorem 2.2. We argue by a contradiction. Suppose that
(4) were false. Then we would have (6). By Proposition 3.1 and (6) we
see all conclusions in Propositions 3.2-3.4 would hold. By Proposition 3.4

attains a maximum over at (’, )e 9 for small , . Therefore
w(x, y)Gw(, )+ (x y) (., ) in 2 X 2.

Expanding at (, ) yields

(x,, A)(, 9) e J’+w(, ) with g(,, )GA
where ,=V(, ) and V=(Vx, Vv).

Here J,+ and d’-, respectively, denote the sub- and super 2-jets (see
[2]). Since (, ) is an interior point of X and F satisfy (F4), we apply
Theorem 1 in [2] and conclude that for each 2)0 there exists X, YeS
such that
8 ) (x, X) e J.*u(2), (-, Y) e J:’-v()

1 I)I +(9) --(+A ( )A A,
where x g(, ), g(., ). Here J’ and J’-, respectively, de-
note the closure of J. and J’-. Since u and v are, respectively, sub-
and supersolu$ions of (3), it follows from (8) that i+F,(,, gZx, X)O,
+F*(, , ’v, Y)0 which yields

O0) 0-+F,(, , ,X)--F*(, , --, Y),
where =u(:D, =v(). By (F5) this estimate yields
(1) 0/2+r,(, , x, X)--F*(, , --, Y)
since Proposition 3.2 implies --/2. We devide the situation in two
cases depending on the behavior of -- as 0. In both cases we have
/2g0 considering Proposition 3.2, which yields a contradiction. We
thus proved (4).
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