60. On the Reduction of Binary Cubic Forms with Positive Discriminants. I

By Masao Arai
Gakushuin Girls' High School
(Communicated by Shokichi Ifanaga, m. J. A., Sept. 12, 1990)

In a former paper [1], we used the quadruple of integers, named Voronoi quadruple (abridged V-quadruple), to obtain an integral basis of an order of a cubic field. The same quadruple has been already used by Mathews [2] to develop a theory of reduction of binary cubic forms with negative discriminants. Davenport [3] has given a reduction theory for the case of positive discriminants using another method. In this paper we shall give a reduction theory of binary cubic forms with positive discriminants using the quadruple introduced in [1]. Our main results will be given in § 1. In a subsequent note II, applying this theory and that of Mathews' [2] to the theory of cubic fields, we shall give a method of the construction of a table of non-conjugate cubic fields with discriminants less than a given positive number in absolute value.
§ 1. A binary cubic form
(1) $\quad f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}, \quad(a, b, c, d) \in Z^{4}$
and another cubic form

$$
\begin{equation*}
f^{\prime}(x, y)=a^{\prime} x^{3}+b^{\prime} x^{2} y+c^{\prime} x y^{2}+d^{\prime} y^{3}, \quad\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \in Z^{4} \tag{2}
\end{equation*}
$$

are defined to be equivalent if there exists a set of integers p, q, r, s which satisfy

$$
\begin{equation*}
f^{\prime}(x, y)=f(p x+q y, r x+s y), \quad p s-q r_{r}= \pm 1 \tag{3}
\end{equation*}
$$

We express the equivalence as $f \sim f^{\prime}$ or $(a, b, c, d) \sim\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$. In such a case, we can write $M=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right), M \in G L(2, Z)$, and it is easily verified that

$$
\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) M
$$

where

$$
\boldsymbol{M}=\left[\begin{array}{llll}
p^{2} & 3 p^{2} q & 3 p q^{2} & q^{3} \\
p^{2} r & p(p s+2 q r) & q(2 p s+q r) & q^{2} s \\
p r^{2} & r(2 p s+q r) & s(p s+2 q r) & q s^{2} \\
r^{3} & 3 r^{2} s & 3 r s^{2} & s^{3}
\end{array}\right] \in G L(4, Z)
$$

The mapping $\nu: M \rightarrow M$ gives an injective homomorphism from $G L(2, Z)$ to $G L(4, Z)$ as $\left[\begin{array}{c}X^{\prime 3} \\ X^{\prime 2} Y^{\prime} \\ X^{\prime} Y^{\prime 2} \\ Y^{\prime 3}\end{array}\right]=M\left[\begin{array}{c}X^{3} \\ X^{2} Y \\ X Y^{2} \\ Y^{3}\end{array}\right]$ follows from $\left[\begin{array}{l}X^{\prime} \\ Y^{\prime}\end{array}\right]=M\left[\begin{array}{c}X \\ Y\end{array}\right]$.

The discriminant of the form (1) is the invariant

$$
D=b^{2} c^{2}-4 a c^{3}-4 b^{3} d+18 a b c d-27 a^{2} d^{2} .
$$

The Hessian of the form (1) is the quadratic covariant

$$
\begin{equation*}
h(x, y)=A x^{2}+B x y+C y^{2}, \tag{4}
\end{equation*}
$$

where

$$
A=b^{2}-3 a c, B=b c-9 a d, \quad \text { and } \quad C=c^{2}-3 b d
$$

We write $H(a, b, c, d)=(A, B, C)$. A simple calculation shows that if the equivalence (3) holds between the cubic forms (1) and (2), then

$$
h^{\prime}(x, y)=h(p x+q y, r x+s y)
$$

holds between the corresponding Hessians, where

$$
h^{\prime}(x, y)=A^{\prime} x^{2}+B^{\prime} x y+C^{\prime} y^{2} .
$$

In this case, we have

$$
\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=(A, B, C) \tilde{M}
$$

where

$$
\tilde{M}=\left[\begin{array}{lll}
p^{2} & 2 p q & q^{2} \\
p r & p s+q r & q s \\
r^{2} & 2 r s & s^{2}
\end{array}\right] \in G L(3, Z)
$$

The mapping $\nu_{1}: M \rightarrow \tilde{M}$ gives a homomorphism with kernel $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right.$, $\left.\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$, from $G L(2, Z)$ to $G L(3, Z)$, as $\left[\begin{array}{c}X^{\prime 2} \\ X^{\prime} Y^{\prime} \\ Y^{\prime 2}\end{array}\right]=\tilde{M}\left[\begin{array}{c}X^{2} \\ X Y \\ Y^{2}\end{array}\right]$ follows from $\left[\begin{array}{l}X^{\prime} \\ Y^{\prime}\end{array}\right]=$ $M\left[\begin{array}{l}X \\ Y\end{array}\right]$. If $D>0$, the Hessian is positive definite, and we have always (5)

$$
4 A C-B^{2}=3 D>0, \quad A>0, \quad C>0
$$

Hermite has called the binary cubic form (1) reduced if its Hessian (4) is reduced, that is, if (A, B, C) satisfies

$$
\begin{equation*}
0 \leq B \leq A \leq C \tag{6}
\end{equation*}
$$

Two equivalent reduced cubic forms f and f^{\prime} do not necessarily coincide, as shown by a counter-example:
$f(x, y)=x^{3}-6 x y^{2}-2 y^{3}, f^{\prime}(x, y)=f(x+y,-y)=x^{3}+3 x^{2} y-3 x y^{2}-3 y^{3}$, $h(x, y)=h^{\prime}(x, y)=18 x^{2}+18 x y+36 y^{2}$, where f and f^{\prime} are reduced and $f \sim f^{\prime}$, but $f \neq f^{\prime}$.

Now, we introduce the following definition:
Definition 1. If a binary cubic form (1) with discriminant $D>0$ and its Hessian (4) satisfies

$$
\left\{\begin{array}{cl}
\text { I } & 0 \leq B \leq A \leq C, \\
\text { II } & a>0, \\
\text { III } & A=B \text { implies } 3 a-2 b>0, \\
\text { IV } & A=C, A \neq B \text { implies } a-|d|<0, \\
\text { V } & B=0 \text { implies } d<0,
\end{array}\right.
$$

then we call the cubic form (1) strictly reduced.
In § 2 we shall prove:
Theorem 1. For any binary cubic form $f(x, y)$ with positive discriminant, there exists a strictly reduced form $f^{\prime}(x, y)$ which is equivalent to $f(x, y)$.

In our proof, we shall give a procedure of reduction.

In § 3, we shall prove furthermore:
Theorem 2. If two strictly reduced binary cubic forms are equivalent, they coincide.

Throughout this note, $\boldsymbol{V}, \boldsymbol{V}_{1}, V_{0}$ will denote three sets defined as follows:
$\boldsymbol{V}=\left\{(a, b, c, d) \in \boldsymbol{Z}^{4} \mid a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right.$ is irreducible over \boldsymbol{Q} and $\left.D>0\right\}$
$V_{1}=\left\{(a, b, c, d) \in V \mid a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right.$ is reduced $\}$
$V_{0}=\left\{(a, b, c, d) \in V_{1} \mid a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\right.$ is strictly reduced $\}$
\S 2. In $\S \S 2,3$ of this paper will occur the following 8 special matrices belonging to $G L(2, Z)$:
$I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), F=\left(\begin{array}{rr}-1 & -1 \\ 1 & 0\end{array}\right), G=\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right), P=\left(\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right), Q=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$,
$R=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), S=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
In the following four lemmas, we assume $(a, b, c, d),\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \in V$, $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) M$, and $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=(A, B, C) \tilde{M}$, where $M=\nu(M)$, $\tilde{M}=\nu_{1}(M), M \in G L(2, Z)$, and $(A, B, C)=H(a, b, c, d)$.

Lemma 1. In calculating ($a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$) and ($A^{\prime}, B^{\prime}, C^{\prime}$) for given $(a, b$, $c, d)$ with Hessian (A, B, C) for $M=-I, P, R,-R, S, T^{n}$, we obtain:

M				$M^{-1}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$
(1)	$-I$	$-I$	$(-a,-b,-c,-d)$	(A, B, C)
(2)	P	P	$(a, 3 a-b, 3 a-2 b+c, a-b+c-d)$	$(A, 2 A-B, A-B+C)$
(3)	R	R	(d, c, b, a)	(C, B, A)
(4)	$-R$	$-R$	$(-d,-c,-b,-a)$	(C, B, A)
(5)	S	S	$(a,-b, c,-d)$	$(A,-B, C)$
(6)	T^{n}		$\left(a, 3 n a+b, 3 n^{2} a+2 n b+c\right.$,	$(A, 2 n A+B$,
		$\left.n^{3} a+n^{2} b+n c+d\right)$	$\left.n^{2} A+n B+C\right)$	

Lemma 2. In each of the cases (1)-(5) of Lemma 1, the following holds:
(1)
$\Longleftrightarrow V_{1} \ni\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$
(2) $\quad V_{1} \ni(a, b, c, d), A=B \quad \Longleftrightarrow \quad V_{1} \ni\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right), A^{\prime}=B^{\prime}$
(3) $\quad V_{1} \ni(a, b, c, d), A=C \quad \Longleftrightarrow \quad V_{1} \ni\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right), A^{\prime}=C^{\prime}$
(4) $\quad V_{1} \ni(a, b, c, d), A=C \quad \Longleftrightarrow \quad V_{1} \ni\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right), A^{\prime}=C^{\prime}$
(5) $\quad V_{1} \ni(a, b, c, d), B=0 \Longleftrightarrow V_{1} \ni\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right), B^{\prime}=0$

Lemma 3. In each of the cases (1)-(5) of Lemma 1, the following inequality holds:
(1) $a a^{\prime}<0$,
(2) $(3 a-2 b)\left(3 a^{\prime}-2 b^{\prime}\right) \leq 0$,
(3) $(a-d)\left(a^{\prime}-d^{\prime}\right) \leq 0$,
(4) $(a+d)\left(a^{\prime}+d^{\prime}\right) \leq 0$,
(5) $d d^{\prime}<0$.

We omit the easy proofs of Lemmas 1-3.
Lemma 4. $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is reducible over \boldsymbol{Q}, if one of the following conditions (1), (2), (3) holds:
(1) $A=B, 3 a-2 b=0$,
(2) $A=C, A \neq-B, a-d=0$,
(3) $A=C, A \neq B, a+d=0$.

Indeed, we have under each of these conditions:

$$
\begin{equation*}
f(x, y)=(2 x+y)\left(\frac{a}{2} x^{2}+\frac{a}{2} x y+d y^{2}\right) \tag{1}
\end{equation*}
$$

(2) $f(x, y)=(x+y)\left(a x^{2}-(a-b) x y+a y^{2}\right)$,
(3) $f(x, y)=(x-y)\left(a x^{2}+(a+b) x y+a y^{2}\right)$.

Proof of Theorem 1. We prove the theorem by showing the procedure of performing actually successive linear transformations of ($a_{1}, b_{1}, c_{1}, d_{1}$) in V to obtain a (a, b, c, d) in V_{0}. Put $(a, b, c, d)=\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$. 1) Apply R if neccesary, to get $A \leq C$ (where, "apply R " means, "apply $\nu(R)$ to (a, b, c, d) to obtain $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) \nu(R)$, and simultaneously, apply $\nu_{1}(R)$ to (A, B, C) to obtain $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=(A, B, C) \nu_{1}(R)$, where $(A, B, C)=H(a, b, c, d)$ ''). Rewrite now ($a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$) by (a, b, c, d) to go to the next step. (We always do the same to go on, without repeating this comment.) 2) Apply $-I$ if neccesary, to get $a>0$. 3) Apply T^{n} with appropriate n, to get $-A \leq B \leq A$. 4) If $B<0$, then apply S to get $0 \leq B \leq A$. 5) If $A>C$, go back to 1) and repeat the same procedure. Since we have $A>0, C>0$, and the value of A decreases each time as we proceed, we get $0 \leq B \leq A \leq C$ and $a>0$ after a finite number of these procedures. 6) If $0<B<A<C$, we are done. 7) If $0=B<A<C$, applying S if neccesary, we obtain (a, b, c, d) in V_{0}. 8) If $A=B$, we apply P if neccesary and obtain (a, b, c, d) in V_{0} in view of Lemma 4 (1). 9) If $0 \leq B<A=C$, according to $d>0$ or $d<0$, we apply R or $-R$ if neccesary and obtain (a, b, c, d) satisfying I-IV of Definition 1 in view of Lemma 4 (2) or (3). 10) if $B>0$, we are done. 11) If $B=0$ applying S if neccesary, we can find (a, b, c, d) in V_{0}.
§3. In the following three lemmas, we assume (a, b, c, d), $\left(\alpha^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ $\in V_{1},\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) M$ and $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=(A, B, C) \tilde{M}$, where $M=\nu(M)$, $\tilde{M}=\nu_{1}(M), M=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \in G L(2, Z)$ and $(A, B, C)=H(a, b, c, d)$.

Lemma 5. In this situation, we have
(1) $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=(A, B, C), 0 \leq B \leq A \leq C$.
(2) $\left(A p^{2}+B p r+C r^{2}=A\right.$,
(3) $\{2 A p q+B(p s+q r)+2 C r s=B$,
(4) $A q^{2}+B q s+C s^{2}=C$.
(5) $((A-B) p r=0$,
(7) $p^{2}+p r+r^{2}=1$.
(8) $\binom{p}{r}= \pm\binom{ 1}{0}, \pm\binom{ 0}{1}, \pm\binom{ 1}{-1}$.

Proof. (1) is obvious from the definition of V_{1}. (2)-(4) follow in rewriting (1). (5)-(7) : $A p^{2}+B p r+C r^{2}=A, B \geq 0$ implies $p r \leq 0$ which implies $A p r \leq B p r . \quad A \leq C$ implies $A r^{2} \leq C r^{2}$. Clearly $p^{2}+p r+r^{2} \geq 1$. $A p^{2}+B p r+$ $C r^{2} \geq A\left(p^{2}+p r+r^{2}\right) \geq A=A p^{2}+B p r+C r^{2}$. By considering these inequalities, we obtain (5)-(7). (8) is clear from (7).

Lemma 6. In this situation, we have
(1) $B<A<C$ implies $M= \pm I$,
(2) $B<A=C$ implies $M= \pm I, \pm R$,
(3) $B=A<C$ implies $M= \pm I, \pm P$,
(4) $B=A=C$ implies $M= \pm I, \pm F, \pm G, \pm P, \pm Q, \pm R$.

Sketch of proof. Case (1) $B<A<C$: By Lemma 5 (5)-(7), $\binom{p}{r}= \pm\binom{ 1}{0}$. $p s-q r \pm 1$ implies $s= \pm 1$. By Lemma 5(3), $\pm 2 A q+B p s=B . B<A$ implies $q=0, p s=1$. Thus, $M= \pm I$.

Case (2) $\quad B<A=C: \quad$ By Lemma 5(5), (8), $\binom{p}{r}= \pm\binom{ 1}{0}, \pm\binom{ 0}{1} . \quad(2-1)$: If $\binom{p}{r}= \pm\binom{ 1}{0}$ then $M= \pm I$ as in case (1). (2-2): If $\binom{p}{r}= \pm\binom{ 0}{1}$, then by Lemma 5(3), Bqr $\pm 2 C s=B . \quad B<C$ implies $s=0, q r=1$. Thus $M= \pm R$.

Case (3) $B=A<C: \quad$ By Lemma 5(6), (8), (3), $2 q+s=p,\binom{q}{s}=\binom{0}{p}$, $\binom{p}{-p}$. Thus, $M= \pm I, \pm P$.

Case (4) $B=A=C: \quad$ By Lemma $5(4), q^{2}+q s+s^{2}=1$. Thus, $\binom{q}{s}=$ $\pm\binom{ 1}{0}, \pm\binom{ 0}{1}, \pm\binom{ 1}{-1}$. By Lemma 5(3), $2 p q+p s+q r+2 r s=1$. (4-1): If $\binom{p}{r}= \pm\binom{ 1}{0}$, then $\pm(2 q+s)=1 . \quad\binom{q}{s}= \pm\binom{ 0}{1}, \pm\binom{ 1}{-1} . \quad$ Thus $M= \pm I, \pm P$. (4-2): If $\binom{p}{r}= \pm\binom{ 0}{1}$, then $\pm(q+2 s)=1,\binom{q}{s}= \pm\binom{ 1}{0}, \pm\binom{-1}{1}$. Thus, $M= \pm R, \pm G . \quad(4-3): \quad$ If $\binom{p}{r}= \pm\binom{ 1}{-1}$, then $\pm(q-s)=1, \quad\binom{q}{s}= \pm\binom{ 1}{0}$, $\pm\binom{ 0}{-1}$. Thus, $M= \pm F, \pm Q$.

Lemma 7. (1) $A=B=C$ implies $c=-3 a+b, d=-a$ and vice versa,
(2) $A=B=C$ and $(M=F$ or $M=G)$ implies $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d)$,
(3) $A=B=C$ and $\left(M=P\right.$ or $M=Q$ or $M=-R$) implies ($a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$) $=(-d,-c,-b,-a)$ and $3 a^{\prime}-2 b^{\prime}=-(3 a-2 b)$.

Sketch of proof. (1) As $B c-C b=3 A d, B b-A c=3 C a, A=B=C$ implies $c-b=3 d, b-c=3 a$ which implies $c=-3 a+b, d=-a$. Conversely, $c=-3 a+b, d=-a$ implies $A=B=C=9 a^{2}-3 a b+b^{2}$.
(2) If $M=F$, then $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(-a+b-c+d,-3 a+2 b-c,-3 a+b$, $-a)=(a, b, c, d)$. If $M=G$, then $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(-d, c-3 d,-b+2 c-3 d, a-$ $b+c-d)=(a, b, c, d)$.
(3) If $M=P$, then $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, 3 a-b, 3 a-2 b+c, a-b+c-d)$ $=(-d,-c,-b,-a)$. If $M=Q$, then $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(-a+b-c+d, b-2 c$ $+3 d,-c+3 d, d)=(-d,-c,-b,-a) .3 a^{\prime}-2 b^{\prime}=-(3 a-2 b)$ is easily seen.

Proof of Theorem 2. We assume that $(a, b, c, d),\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \in V_{0}$, $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) M, \nu^{-1}(M)=M \in G L(2, Z)$. Our aim is to obtain ($a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$) $=(a, b, c, d)$. Considering the Hessians $H(a, b, c, d)=(A, B, C)$, $H\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ with $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=(A, B, C) \tilde{M}$, we have $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$
$=(A, B, C)$ by Lemma 5 (1). To perform the proof, we break up the condition $0 \leq B \leq A \leq C$ into four cases : (1) $B<A<C$, (2) $B<A=C$, (3) $B=A<C$, (4) $B=A=C$.

In case (1), by Lemma 6 (1) and II (i.e. the second condition in Definition 1 § 1. In the follwing, we shall quote in this way the conditions given in Definition 1), we see $M=I$.

In case (2), by Lemma 6 (2), we see $M= \pm I, \pm R$. We subdivide now the cases. (2-1): If $M= \pm I$, then $M=I$ by II. (2-2-1): If $M= \pm R, d>0$, then $M=R$ by II. By Lemmas 1-3 (3) and Lemma 4 (2), we find $a^{\prime}-d^{\prime}=$ $-(a-d)>0$ which contradicts to IV. (2-2-2): If $M= \pm R, d<0$, then $M=-R$ by II. By Lemmas 1-3 (4) and Lemma 4 (3), we find $a^{\prime}-\left|d^{\prime}\right|=$ $a^{\prime}+d^{\prime}=-d-a>0$, which contradicts to IV.

In case (3), by Lemma 6 (3) and II, we have $M=I, P$. If $M=P$, then by Lemmas 1-3 (2) and Lemma 4 (1), we find $3 a^{\prime}-2 b^{\prime}=-(3 a-2 b)<0$, which contradicts to III.

In case (4), by Lemma 6 (4) and II, we have $M=I, F, G, P, Q,-R$. (4-1): If $M=F, G$, then by Lemma 7 (2), we find $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d)$. (4-2): If $M=P, Q,-R$, then by Lemma 7 (3), we find $3 a^{\prime}-2 b^{\prime}=-(3 a-2 b)$ <0 which contradicts to III. This completes the proof of Theorem 2.

References

[1] M. Arai: On Voronoi's theory of cubic fields. I. Proc. Japan Acad., 57A, 226-229 (1981).
[2] G. B. Mathews: On the reduction and classification of binary cubics which have a negative discriminant. Proc. London Math. Soc., (2) 10, 128-138 (1912).
[3] H. Davenport: The reduction of a binary cubic form. I. J. London Math. Soc., 20, 14-22 (1945).

