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0. Introduction. Let M be a clCsed Riemann surface of genus g,
S a finite subset of M and p a representation of the fundamental group
(M-S) on C. The Riemann-Hilbert problem states as follows:

Find a Fuchsian linear differential equation of order n ,with singularities
on S and having p as its monodromy representation.

When S consists of m distinct points, the set of Fuchsian linear differ-
ential equations of order n having their singuralities only on S has a struc-
ture of a complex manifold of dimension 2-1n(n+l)m+n2(g-1) (Kita [3]),
whereas the totality of equivalence classes of complex n-dimensional irre-
ducible representations of the fundamental group (M-S)forms a com-
plex manifold of dimension n(m+2g-2)+l. So, in general, we must in-
troduce apparent singulalities to solve the Riemann-Hilbert problem. On
the number of apparent singulalities, the following result is known ([4])

Theorem 1 (Ohtsuki). If the representation p is irreducible and if the
local representation at a point of S induced by p is semi-simple, then there
exists a Fuchsian linear equation of order n on M which has the given repre-
sentation p as its monodromy representation and has at most

2-1n(n--1)m+n(g--1)+ 1
apparent singularities.
In this paper, without assuming that the local representation at a point
of S induced by p is semi-simple, we show the ollowing theorem:

Main theorem. Let M, S and p be as above Let d be the greatest
common divisor of complex dimensions of all invariant subspaces of the local
representation induced by p at each point of S. Then there exists a Fuchsian
linear equation of order n on M which has the given representation p as its
monodromy representation and has at most

2-n(n 1)m+n2(g 1) + d
apparent singularities.
Since d is at most n, we have easily the

Corollary. There exists a Fuchsian linear equation of order n on M
which has the given representation p as its monodromy representation and
has at most

2-n(n 1)m+n(g-- 1)+n
apparent singularities.

1. The method of Deligne. To establish the main theorem, we re-
call the proof o Theorem 1 (Ohtsuki [4]).
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Deligne’s method. 1) The representation p defines a local system V’
o n-dimensional complex vector spaces over M-S.

2) V’ determines canonically a holomorphic vector bundle V’ over
M-S with a holomorphic connection 17’ such that

v’={ e r’ ’ 0).
3) Then the pair (V’, V’) extends to a pair (V, V), where V is a holomor-

phic vector bundle over M and V is a meromorphic connection on V such
that the restriction (V]_s, V],,_s) is equivalent to (g’, V’).

4) To obtain an ordinary linear differential equation, we take a. holo-
morphic section o the dual bundle V* such that q(V’) is isomorphic to
V’ as local systems, where we consider (V’) as a subsheaf of G-s. Then
a differential equation having (V’) as the solution, shea gives a solution
of the Riemann-Hilbert problem.
(V, V) is not uniquely determined by (V’, V’). We use this fact in the proof
of the main theorem.

2. Differential equation with the given solution sheaf. Let (V, V)
be an extension of the pair (V’, V’) with a non-zero holomorphic section q e
F(M, G(V*)) o the dual bundle V* of V. It follows rom the irreducibility
of the given representation p that the locM system q(V’) is isomorphic to
V’. A differential equation having q(V’) as the solution sheaf is constructed
as follows.

Let ,..., be a. local C-basis of V’]v on a. local chart (U, z). Then
(, }, ..., (q, } form a C-basis o (V’)[v. The differential equation on
(U, z) with the solution sheaf (V’) is

Dy
det D(,} D(,} =0,

where D=d/dz. On the other ha.nd, the connection g on the bundle V de-
fines the dual connection on the dual bundle V* o V, which we denote also
by g. The covariant derivative g, o by D with respect to the connec-
tion g is a local meromorphic section of V* on U. We cain define (g,) e
F(U, (V*)) by

(.) .((.)-).
We have

D(+, #}=((g.)+,} (j=l, ..., n),
since, for a,ny meromorphic section e F(U, (V*)),

D(,}=(V,}+(,V} and V=O.
Thus we obtain the differential equation:

(2.1) det ](g,, } (g+,} Dy ] =0./
t((F)n+, } (()+,} Dy
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3. The Wronskian and the number of apparent singularities. We
define the Wronskian W(+, V) as follows"

First, we define W(+, V.) by
W(, 7)=ffAIrqA... A (lz)-+.

For another local coordinate (U’, z’), we have on U U’"W(+, V)=K(-’/W(, ,),
where D’=d/dz’ and K=dzt/dz. It follows that a global meromorphic
section W(+, V) of the line bundle det (V*)9(-’/2 is well-defined, 9 being
the canonical line bundle of the Riemann surface M"

W(+, V) e F(M, (det (V*)@(-’/)).
We have rom (2.1)

oDny+D-y+ +y:0,
where

0= <W(+, ), ,A... A>
,=-(+A+A... A()-+A()+, ,A... A>

Since A... A$0, Shis differe.nial equation has singularities only
She zeros and poles of She Wronskian W= W(+,
holomorphie on M-S and has a pole of order
The zeros of W ae apparen$ singulari$ies of She differe.n$ial equa$ion.
We have.

(zeros of W)- $ (poles of W)

= (dec (r*)@-,/)

where we consider She firs$ Chern classes as inSegers
(det (*)@-’/), e, (r*), e () e H (M, Z)Z.

I$ follows tha$

(aparen$ singulari$ies), (*)+Z-(-- 1)(m+Zg-Z).
Thus we arrive aS

Lemma 3.1. Let (r, ) be etesfo of (r’, ’)
bdle * of o-2eo gfobf ofomorpe seeo + e F(M, O(V*)).

mos

4. Proof of the theorem. We es$imaSe She c (F*), show She exis$-

enee of (F, ) wih a non-zero global see$ion + F(M, O(V*)) and Shen com-
plete he proof. We consSrue$ an e.xSension (, g) of (’, g’) in She follow-
ing manner. Le$ (U, ) be a simply eonneeSed coordinate neighbourhood
of S such Sha$ ()=0 and US={}. Le$ y be a genera$or of She
fundamenSal group (U-) and A e GL(, C) She image of r by She local
represenSa$ion induced by aS . Le$ B be a maSrix such
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(4.1) A exp (-2iB).
We define a meromorphic connection V on the trivial bundle U C by

V=d+z-Bdz.
By (4.1), we can patch (V’, V’) and (U C, V) together. In this way, we
obtain an extension (Y, V) o (V’, V’) to M. By a straight computation, we
have an important lemma.

Lemma 4.2. The first Chern class c (V) (e H (M, Z)_Z) is given by

c ()=--tr (B).
If the Jordan normal form J of A is o the following form:

A1 0 a.A
A.- ". e GL(81, C)

0 A
8+

then the Jordan normal form L of B can be written as:

-B, 0
B.

0 B,
Note that for each fl e C,

a exp (-2i).
We can choose for each fl an arbitray branch of the logarithm. If B’ is
a.nother matrix such that
(4.3) As exp (-- 2iB’,),
then for some , e Z,
(4.4) tr (B’a) tr (B) vd,
where d is the greatest common divisor of 3,, ..., 3,. Conversely, for a.ny
, e Z, there exists a matrix B’ satisfying (4.3) and (4.4). From (4.2), we
ha.ve the following lemma.

Lemma 4.5. For some c e Z, c, (V) can take any value in
{c+vdlveZ},

where d is the greatest common divisor of the set {d a e S}.
On the other ha.nd, 2rom the. Riema.nn-Roch theorem, we deduce the fob
lowing"

Lemma 4.6. If
c, (V*) >=n(g-- 1) + 1,

then there exists a non-zero section e F(M, C)(V*)).
By (4.5), we can choose a pair (V, V) such that

n(g-1)+ 1<_c (V*)<_n(g-1)+d.
By (3.1), (4.6) and this act, we complete the proof. If the local repre-
sentation at some point o S induced by p is semi-simple, then d=l and
we have Theorem 1.
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