56. On the Number of Apparent Singularities

By Akihiro SaEki
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1990)

§ 0. Introduction. Let M be a closed Riemann surface of genus g, S a finite subset of M and ρ a representation of the fundamental group $\pi_{1}(M-S)$ on C^{n}. The Riemann-Hilbert problem states as follows:

Find a Fuchsian linear differential equation of order n with singularities on S and having ρ as its monodromy representation.

When S consists of m distinct points, the set of Fuchsian linear differential equations of order n having their singuralities only on S has a structure of a complex manifold of dimension $2^{-1} n(n+1) m+n^{2}(g-1)$ (Kita [3]), whereas the totality of equivalence classes of complex n-dimensional irreducible representations of the fundamental group $\pi_{1}(M-S)$ forms a complex manifold of dimension $n^{2}(m+2 g-2)+1$. So, in general, we must introduce apparent singulalities to solve the Riemann-Hilbert problem. On the number of apparent singulalities, the following result is known ([4]) :

Theorem 1 (Ohtsuki). If the representation ρ is irreducible and if the local representation at a point of S induced by ρ is semi-simple, then there exists a Fuchsian linear equation of order n on M which has the given representation ρ as its monodromy representation and has at most

$$
2^{-1} n(n-1) m+n^{2}(g-1)+1
$$

apparent singularities.
In this paper, without assuming that the local representation at a point of S induced by ρ is semi-simple, we show the following theorem:

Main theorem. Let M, S and ρ be as above Let d be the greatest common divisor of complex dimensions of all invariant subspaces of the local representation induced by ρ at each point of S. Then there exists a Fuchsian linear equation of order n on M which has the given representation ρ as its monodromy representation and has at most

$$
2^{-1} n(n-1) m+n^{2}(g-1)+d
$$

apparent singularities.
Since d is at most n, we have easily the
Corollary. There exists a Fuchsian linear equation of order n on M which has the given representation ρ as its monodromy representation and has at most

$$
2^{-1} n(n-1) m+n^{2}(g-1)+n
$$

apparent singularities.
§ 1. The method of Deligne. To establish the main theorem, we recall the proof of Theorem 1 (Ohtsuki [4]).

Deligne's method. 1) The representation ρ defines a local system V^{\prime} of n-dimensional complex vector spaces over $M-S$.
2) V^{\prime} determines canonically a holomorphic vector bundle V^{\prime} over $M-S$ with a holomorphic connection ∇^{\prime} such that

$$
V^{\prime}=\left\{\xi \in V^{\prime} \mid \nabla^{\prime} \xi=0\right\} .
$$

3) Then the pair $\left(V^{\prime}, \nabla^{\prime}\right)$ extends to a pair (V, ∇), where V is a holomorphic vector bundle over M and V is a meromorphic connection on V such that the restriction ($\left.V\right|_{M-S},\left.\nabla\right|_{V \mid M-S}$) is equivalent to ($V^{\prime}, \nabla^{\prime}$).
4) To obtain an ordinary linear differential equation, we take a holomorphic section ψ of the dual bundle V^{*} such that $\psi\left(V^{\prime}\right)$ is isomorphic to V^{\prime} as local systems, where we consider $\psi\left(V^{\prime}\right)$ as a subsheaf of \mathcal{O}_{M-s}. Then a differential equation having $\psi\left(V^{\prime}\right)$ as the solution sheaf gives a solution of the Riemann-Hilbert problem.
(V, ∇) is not uniquely determined by $\left(V^{\prime}, \nabla^{\prime}\right)$. We use this fact in the proof of the main theorem.
§2. Differential equation with the given solution sheaf. Let (V, ∇) be an extension of the pair ($V^{\prime}, \nabla^{\prime}$) with a non-zero holomorphic section $\psi \in$ $\Gamma\left(M, \mathcal{O}\left(V^{*}\right)\right)$ of the dual bundle V^{*} of \boldsymbol{V}. It follows from the irreducibility of the given representation ρ that the local system $\psi\left(V^{\prime}\right)$ is isomorphic to V^{\prime}. A differential equation having $\psi\left(V^{\prime}\right)$ as the solution sheaf is constructed as follows.

Let ξ_{1}, \cdots, ξ_{n} be a local C-basis of $\left.V^{\prime}\right|_{U}$ on a local chart (U, z). Then $\left\langle\psi, \xi_{1}\right\rangle, \cdots,\left\langle\psi, \xi_{n}\right\rangle$ form a C-basis of $\left.\psi\left(V^{\prime}\right)\right|_{U}$. The differential equation on (U, z) with the solution sheaf $\psi\left(V^{\prime}\right)$ is

$$
\operatorname{det}\left[\begin{array}{lll}
\left\langle\psi, \xi_{1}\right\rangle & \cdots\left\langle\psi, \xi_{n}\right\rangle & y \\
D\left\langle\psi, \xi_{1}\right\rangle & \cdots D\left\langle\psi, \xi_{n}\right\rangle & D y \\
\cdots \cdots \cdot \\
D^{n}\left\langle\psi, \xi_{1}\right\rangle & \cdots D^{n}\left\langle\psi, \xi_{n}\right\rangle & D^{n} y
\end{array}\right]=0,
$$

where $D=d / d z$. On the other hand, the connection V on the bundle V defines the dual connection on the dual bundle V^{*} of V, which we denote also by ∇. The covariant derivative $\nabla_{D} \psi$ of ψ by D with respect to the connection ∇ is a local meromorphic section of V^{*} on U. We can define $\left(\nabla_{D}\right)^{k} \psi \in$ $\Gamma\left(U, \mathscr{M}\left(V^{*}\right)\right)$ by

$$
\left(\nabla_{D}\right)^{k} \psi=\nabla_{D}\left(\left(\nabla_{D}\right)^{k-1} \psi\right)
$$

We have

$$
D^{k}\left\langle\psi, \xi_{j}\right\rangle=\left\langle\left(\nabla_{D}\right)^{k} \psi, \xi_{j}\right\rangle \quad(j=1, \cdots, n),
$$

since, for any meromorphic section $\zeta \in \Gamma\left(U, \mathscr{M}\left(V^{*}\right)\right)$,

$$
D\left\langle\zeta, \xi_{j}\right\rangle=\left\langle\nabla_{D} \zeta, \xi_{j}\right\rangle+\left\langle\zeta, \nabla_{D} \xi_{j}\right\rangle \quad \text { and } \quad \nabla_{D} \xi_{j}=0 .
$$

Thus we obtain the differential equation:

$$
\operatorname{det}\left[\begin{array}{lll}
\left\langle\psi, \xi_{1}\right\rangle & \cdots\left\langle\psi, \xi_{n}\right\rangle & y \tag{2.1}\\
\left\langle\nabla_{D} \psi, \xi_{1}\right\rangle & \cdots\left\langle\nabla_{D} \psi, \xi_{n}\right\rangle & D y \\
& \cdots \cdots \cdots & \\
\left\langle\left(\nabla_{D}\right)^{n} \psi, \xi_{1}\right\rangle & \cdots\left\langle\left(\nabla_{D}\right)^{n} \psi, \xi_{n}\right\rangle & D^{n} y
\end{array}\right]=0 .
$$

§3. The Wronskian and the number of apparent singularities. We define the Wronskian $W(\psi, \nabla)$ as follows:

First, we define $W\left(\psi, \nabla_{D}\right)$ by

$$
W\left(\psi, \nabla_{D}\right)=\psi \wedge \nabla_{D} \psi \wedge \cdots \wedge\left(\nabla_{D}\right)^{n-1} \psi .
$$

For another local coordinate (U^{\prime}, z^{\prime}), we have on $U \cap U^{\prime} \neq \phi$:

$$
W\left(\psi, \nabla_{D}\right)=K^{n(n-1) / 2} W\left(\psi, \nabla_{D^{\prime}}\right),
$$

where $D^{\prime}=d / d z^{\prime}$ and $K=d z^{\prime} / d z$. It follows that a global meromorphic section $W(\psi, \nabla)$ of the line bundle $\operatorname{det}\left(V^{*}\right) \otimes \Omega^{n(n-1) / 2}$ is well-defined, Ω being the canonical line bundle of the Riemann surface M :

$$
W(\psi, \nabla) \in \Gamma\left(M, \mathscr{M}\left(\operatorname{det}\left(V^{*}\right) \otimes \Omega^{n(n-1) / 2}\right)\right) .
$$

We have from (2.1)

$$
\alpha_{0} D^{n} y+\alpha_{1} D^{n-1} y+\cdots+\alpha_{n} y=0
$$

where

$$
\begin{aligned}
& \alpha_{0}=\left\langle W(\psi, \nabla), \xi_{1} \wedge \cdots \wedge \xi_{n}\right\rangle \\
& \alpha_{1}=-\left\langle\psi \wedge \nabla_{D} \psi \wedge \cdots \wedge\left(\nabla_{D}\right)^{n-2} \psi \wedge\left(\nabla_{D}\right)^{n} \psi, \xi_{1} \wedge \cdots \wedge \xi_{n}\right\rangle
\end{aligned}
$$

Since $\xi_{1} \wedge \cdots \wedge \xi_{n} \neq 0$, this differential equation has singularities only at the zeros and poles of the Wronskian $W=W(\psi, \nabla)$. We see ([4]) that W is holomorphic on $M-S$ and has a pole of order at most $n(n-1) / 2$ at $a \in S$. The zeros of W are apparent singularities of the differential equation. We have

$$
\begin{aligned}
& \#(\text { zeros of } W)-\#(\text { poles of } W) \\
& \quad=\mathrm{c}_{1}\left(\operatorname{det}\left(V^{*}\right) \otimes \Omega^{n(n-1) / 2}\right) \\
& \quad=\mathrm{c}_{1}\left(V^{*}\right)+2^{-1} n(n-1) \mathrm{c}_{1}(\Omega) \\
& \quad=\mathrm{c}_{1}\left(V^{*}\right)+2^{-1} n(n-1)(2 g-2),
\end{aligned}
$$

where we consider the first Chern classes as integers:

$$
\mathrm{c}_{1}\left(\operatorname{det}\left(\boldsymbol{V}^{*}\right) \otimes \Omega^{n(n-1) / 2}\right), \quad \mathrm{c}_{1}\left(\boldsymbol{V}^{*}\right), \quad \mathrm{c}_{1}(\Omega) \in \mathrm{H}^{2}(M, \boldsymbol{Z}) \simeq \boldsymbol{Z} .
$$

It follows that

$$
\begin{aligned}
& \text { \# (apparent singularities) } \\
& \quad \leqq \mathrm{c}_{1}\left(V^{*}\right)+2^{-1} n(n-1)(m+2 g-2) .
\end{aligned}
$$

Thus we arrive at the
Lemma 3.1. Let (V, ∇) be an extension of $\left(V^{\prime}, \nabla^{\prime}\right)$ such that the dual bundle V^{*} of \boldsymbol{V} has a non-zero global holomorphic section $\psi \in \Gamma\left(M, \mathcal{O}\left(\boldsymbol{V}^{*}\right)\right)$. Then there exists a solution of the Riemann-Hilbert problem which has at most

$$
\mathrm{c}_{1}\left(\boldsymbol{V}^{*}\right)+2^{-1} n(n-1)(m+2 g-2)
$$

apparent singularities.
§4. Proof of the theorem. We estimate the $\mathrm{c}_{1}\left(V^{*}\right)$, show the existence of ($\boldsymbol{V}, \boldsymbol{\nabla})$ with a non-zero global section $\psi \in \Gamma\left(M, \mathcal{O}\left(V^{*}\right)\right)$ and then complete the proof. We construct an extension (V, ∇) of ($V^{\prime}, \nabla^{\prime}$) in the following manner. Let (U, z) be a simply connected coordinate neighbourhood of $a \in S$ such that $z(a)=0$ and $U \cap S=\{a\}$. Let γ be a generator of the fundamental group $\pi_{1}(U-a)$ and $A_{a} \in G L(n, C)$ the image of γ by the local representation induced by ρ at a. Let B_{a} be a matrix such that
(4.1)

$$
A_{a}=\exp \left(-2 \pi i B_{a}\right)
$$

We define a meromorphic connection ∇^{U} on the trivial bundle $U \times C^{n}$ by

$$
\nabla^{U}=d+z^{-1} B_{a} d z
$$

By (4.1), we can patch ($V^{\prime}, \nabla^{\prime}$) and ($U \times C^{n}, \nabla^{U}$) together. In this way, we obtain an extension (V, ∇) of $\left(V^{\prime}, \nabla^{\prime}\right)$ to M. By a straight computation, we have an important lemma.

Lemma 4.2. The first Chern class $\mathrm{c}_{1}(V)\left(\in \mathrm{H}^{2}(M, Z) \simeq Z\right)$ is given by

$$
\mathrm{c}_{1}(V)=-\sum_{a \in S} \operatorname{tr}\left(B_{a}\right) .
$$

If the Jordan normal form J_{a} of A_{a} is of the following form:

$$
J_{a}=\left[\begin{array}{ccc}
A_{1} & & \\
& A_{2} & \\
& & \ddots \\
& & \ddots \\
0 & & \\
\hline
\end{array}\right] \quad A_{\mu}=\left[\begin{array}{ccc}
\alpha_{k} & 1 & \\
& & \ddots \\
& \cdot & \ddots \\
& & \\
& & 1 \\
& & \alpha_{k}+\cdots
\end{array}\right] \in G L\left(\delta_{k}, C\right)
$$

then the Jordan normal form L_{a} of B_{a} can be written as:

$$
L_{a}=\left[\begin{array}{cccc}
B_{1} & & & 0 \\
& B_{2} & & \\
& & \ddots & \\
0 & & B_{\mu}
\end{array}\right] \quad B_{k}=\left[\begin{array}{llll}
\beta_{k} & & & * \\
& \cdot & & \\
& & & \\
0 & & & \beta_{k}
\end{array}\right]
$$

Note that for each $\beta_{k} \in C$,

$$
\alpha_{k}=\exp \left(-2 \pi i \beta_{k}\right) .
$$

We can choose for each β_{k} an arbitray branch of the logarithm. If B_{a}^{\prime} is another matrix such that
then for some $\nu \in Z$,

$$
\begin{equation*}
A_{a}=\exp \left(-2 \pi i B_{a}^{\prime}\right) \tag{4.3}
\end{equation*}
$$

where d_{a} is the greatest common divisor of $\delta_{1}, \cdots, \delta_{\mu}$. Conversely, for any $\nu \in Z$, there exists a matrix B_{a}^{\prime} satisfying (4.3) and (4.4). From (4.2), we have the following lemma.

Lemma 4.5. For some $c \in \boldsymbol{Z}, \mathrm{c}_{1}(\boldsymbol{V})$ can take any value in

$$
\{c+\nu d \mid \nu \in Z\}
$$

where d is the greatest common divisor of the set $\left\{d_{a} \mid a \in S\right\}$.
On the other hand, from the Riemann-Roch theorem, we deduce the following:

Lemma 4.6. If

$$
\mathrm{c}_{1}\left(V^{*}\right) \geqq n(g-1)+1,
$$

then there exists a non-zero section $\psi \in \Gamma\left(M, \mathcal{O}\left(V^{*}\right)\right)$.
By (4.5), we can choose a pair ($V, V)$ such that

$$
n(g-1)+1 \leqq c_{1}\left(\boldsymbol{V}^{*}\right) \leqq n(g-1)+d
$$

By (3.1), (4.6) and this fact, we complete the proof. If the local representation at some point of S induced by ρ is semi-simple, then $d=1$ and we have Theorem 1.

References

[1] Deligne, P.: Équations différentielles à points singuliers réguliers. Lect. Notes in Math., vol. 163, Springer-Verlag (1970).
[2] Iwasaki, K.: Moduli and deformation for Fuchsian projective connections on a Riemann surface. Univ. of Tokyo Preprint Series, 89-16 (1989).
[3] Kita, M.: On the number of parameters of linear differential equations with reguler singularities on a compact Riemann surface. Tokyo J. Math., 10, 69-75 (1987).
[4] Ohtsuki, M.: On the number of apparent singularities of a linear differential equation. ibid., 5, 23-29 (1982).

