36. A Note on the Artin Map. II^{*)}

By Takashi ONO

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

This is a continuation of my preceding paper [2] which will be referred to as (I) in this paper.¹⁾ In (I), we defined, for a finite Galois extension K/k of number fields, a monoid homomorphism (a generalized Artin map)

$$\alpha_{K/k}: I(K/k) \longrightarrow C[G]_0, \ G = G(K/k),$$

where I(K/k) denotes the monoid of nonzero integral ideals α of k whose prime factors are all unramified in K and $C[G]_0$ denotes the center of the group ring C[G]. We, then, obtained a condition for the finiteness of the image of $\alpha_{K/k}$ in terms of characters (I. Theorem). In this paper, we shall study the kernel of $\alpha_{K/k}$ in a similar way. It will turn out that the structure of the kernel becomes simpler if the group G becomes away from being *abelian*.

§1. Center of G. Let G be a finite group. We shall denote by Irr(G) the set of all irreducible C-characters of G. For each $\chi \in Irr(G)$, we put

$$\chi^*(x) = \frac{\chi(x)}{\chi(1)}, \quad x \in G$$

As is well-known, we have $|\chi^*(x)| \leq 1$ for all x, χ^{2} . In this context, it is to be noted that

(1.1) $|\chi^*(x)|=1$ for all $x, \chi \Leftrightarrow G$ is abelian.

In this paper, we are interested in the following property (Z) of G which is weaker than (1.1):

(Z) There is an $x \neq 1$ in G such that $|\chi^*(x)| = 1$ for all $\chi \in Irr(G)$.

(1.2) Proposition. G satisfies $(Z) \Leftrightarrow$ the center of G is nontrivial.

Proof. For an $x \in G$, let Z(x) be the centralizer of x. Our assertion follows from the following chains of equivalences: x is in the center of $G \Leftrightarrow G = Z(x) \Leftrightarrow [G] = [Z(x)]^{s_1} \Leftrightarrow \sum_{x \in \operatorname{Irr}(G)} \chi(1)^2 = [G] = [Z(x)] = \sum_{x \in \operatorname{Irr}(G)} |\chi(x)|^2 \Leftrightarrow$ $|\chi(x)| = \chi(1)$ for all $\chi \Leftrightarrow |\chi^*(x)| = 1$ for all χ . (1.3) Remark. Any nilpotent group $G(\neq 1)$ satisfies (Z). On the other hand, let $G = H \cdot \langle \tau \rangle$, a semidirect product of an abelian normal subgroup Hof odd (≥ 3) order and a cyclic subgroup $\langle \tau \rangle$ such that $\tau \sigma \tau^{-1} = \sigma^{-1}$, $\sigma \in H$, $\tau^2 = 1$. Then G does not satisfy (Z) as its center is trivial. Such a group G

appears as the Galois group of K/Q where K is the Hilbert class field of a *) To the memory of Michio Kuga.

¹⁾ For example, we mean by (I.2) the item (2) in (I).

²⁾ As for elementary facts on characters, see first three chapters (pp. 1-46) of I.M.Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976.

⁸⁾ We denote by [S] the cardinality of a set S.

quadratic field k of prime discriminant; Artin reciprocity implies that $H \approx H_k$, the ideal class group of k. For details of this K/Q, see § 3.

§ 2. Kernel of $\alpha_{K/k}$. Let K/k be a finite Galois extension of number fields with the Galois group G = G(K/k), \mathfrak{p} a prime ideal of k unramified in K and \mathfrak{P} be a prime factor of \mathfrak{p} in K. Denote by $[(K/k)/\mathfrak{P}]$ the Frobenius automorphism of \mathfrak{P} . We denote by $\alpha_{K/k}(\mathfrak{p})$ the element in the center $C[G]_0$ of the group ring C[G]:

(2.1)
$$\alpha_{K/k}(\mathfrak{p}) = \frac{1}{n} \sum_{\sigma \in G} \left[\frac{K/k}{\mathfrak{P}^{\sigma}} \right], \quad n = [K:k].^{4}$$

By linearity, we obtain a monoid homomorphism:

(2.2) $\alpha_{K/k}: I(K/k) \longrightarrow C[G]_0,$

where I(K/k) means the monoid of nonzero integral ideals a such that $(\alpha, \mathcal{A}_{K/k})=1$, here $\mathcal{A}_{K/k}$ being the relative discriminant of K/k. For α , b in I(K/k), we shall define an equivalence by

(2.3)
$$\alpha_{\widetilde{K/k}} \mathfrak{b} \overset{\text{def}}{\longleftrightarrow} \alpha_{K/k}(\mathfrak{a}) = \alpha_{K/k}(\mathfrak{b}).^{\mathfrak{s}}$$

Let σ_i , $1 \leq i \leq r$, $\sigma_i = 1$, be the representatives of conjugate classes of G, \mathfrak{P}_i be a prime ideal in K such that $\sigma_i = [(K/k)/\mathfrak{P}_i]$ and \mathfrak{p}_i be the prime ideal in k below \mathfrak{P}_i . If

(2.4)
$$a = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathfrak{r}_{\mathfrak{p}}(\mathfrak{a})}, \quad \mathfrak{a} \in I(K/k),$$

is a factorization of α in k, we put

(2.5)
$$e_i(\alpha) = \sum_{\alpha \in \mathcal{U}} \nu_{\alpha}(\alpha), \quad 1 \leq i \leq r$$

Since $a = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathfrak{p}_{\mathfrak{p}}(a)} \sim \prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}(a)}$, we have

(2.6)
$$\alpha_{K/k}(\mathfrak{a}) = \prod_{i=1}^r \alpha_{K/k}(\mathfrak{p}_i)^{e_i(\mathfrak{a})}.$$

Since C[G] is semisimple, there is an isomorphism

$$C[G]\approx C_{n_1}\oplus\cdots\oplus C_{n_r}$$

where C_m denotes the ring of all square matrices of order m over C. This isomorphism induces an isomorphism

$$\omega: C[G]_{0} \cong C^{r}$$

Let ω_{ν} be the projection of ω on the ν th factor and χ_{ν} be the ν th irreducible character of C[G], $1 \leq \nu \leq r$.⁶⁾ Then we have

(2.8) $\chi_{\nu}(z) = n_{\nu}\omega_{\nu}(z), \quad n_{\nu} = \chi_{\nu}(1), \quad z \in C[G]_{0}.$

From (2.1), (2.8), it follows that

(2.7)

(2.9)
$$\omega_{\nu}(\alpha_{\kappa/k}(\mathfrak{p}_{i})) = \chi_{\nu}^{*}(\sigma_{i}), \quad 1 \leq \nu, \ i \leq r.$$

Then, from (2.6), (2.9), we have

(2.10)
$$\omega_{\nu}(\alpha_{K/k}(\mathfrak{a})) = \prod_{i=1}^{r} \chi^{*}_{\nu}(\sigma_{i})^{e_{i}(\mathfrak{a})}, \quad 1 \leq \nu \leq r.$$

Since ω in (2.7) is an isomorphism, we have

(2.11)
$$\alpha_{K/k}(\mathfrak{a}) = 1 \Longleftrightarrow \prod_{i=1}^{r} \chi_{\nu}^{*}(\sigma_{i})^{e_{i}(\mathfrak{a})} = 1, \quad 1 \leq \nu \leq r.$$

As $\chi_1^*(\sigma_i) = \chi_{\nu}^*(\sigma_1) = 1$ for all *i*, ν , we obtain from (2.11) the following

⁴⁾ As for other mode of definition, see (I.1), (I.2).

⁵⁾ In the sequel, we simply use \sim in place of $\sim_{K/k}$.

⁶⁾ We may assume that χ_1 is the trivial character.

equivalence which is useful to determine the kernel of $\alpha_{K/k}$:

(2.12)
$$\alpha_{K/k}(\mathfrak{a}) = 1 \Longleftrightarrow \prod_{i=2}^{r} \chi_{\nu}^{*}(\sigma_{i})^{e_{i}(\mathfrak{a})} = 1, \quad 2 \leq \nu \leq r.$$

In general, let F be a free commutative monoid with a set of free generators p's, M a monoid and f a monoid homomorphism: $F \rightarrow M$. We shall call f separable if the following condition holds:

(2.13) $f(a)=1 \iff f(p)=1$ for all $p \mid a$.⁷) (2.14) Theorem. Let K/k be a Galois extension of number fields. If the Galois group G=G(K/k) has no center, then the generalized Artin map $\alpha_{K/k}$ is separable.

(2.15) Proof. Suppose that $\alpha_{K/k}(\alpha) = 1$, $\alpha \in I(K/k)$. Then, by (2.12), we have $\prod_{i=1}^{r} |\chi_{\nu}^{*}(\sigma_{i})|^{\epsilon_{i}(\alpha)} = 1$, $2 \leq \nu \leq r$.

Since G has no center, G does not satisfy the condition (Z) by (1.2) and so, for each $i, 2 \leq i \leq r$, there is a $\nu, 2 \leq \nu \leq r$, such that

$$(2.16) \qquad \qquad |\chi_{\nu}^*(\sigma_i)| < 1.$$

Substituting (2.16) in (2.15), we find that all $e_i(\alpha)=0$, $2\leq i\leq r$; in other words, any prime factor \mathfrak{p} of α is $\sim \mathfrak{p}_1$ and so $\alpha_{\kappa/k}(\mathfrak{p})=1$ which proves (\Rightarrow) of (2.13). Conversely, (\Leftarrow) of (2.13) is trivial. Q.E.D.

(2.17) Remark. Since, for a prime ideal $\mathfrak{p} \in I(K/k)$, we have

(2.18) $\alpha_{K/k}(\mathfrak{p}) = 1 \Leftrightarrow \mathfrak{p} \text{ splits completely in } K \Leftrightarrow \mathfrak{p} = N_{K/k}\mathfrak{P},$

we find, when G = G(K/k) has no center, that Ker $\alpha_{K/k}$ is the submonoid of I(K/k) generated by primes which split completely for K/k and that, for $\alpha \in I(K/k)$,

(2.19) $\alpha_{K/k}(\mathfrak{a}) = 1 \Longrightarrow \mathfrak{a} = N_{K/k}\mathfrak{A}$ for some ideal \mathfrak{A} in K.

Here, note that the converse of (2.19) is not true. In fact, choose a prime $\mathfrak{p} \in I(K/k)$ which does not split completely for K/k and put $\mathfrak{a} = \mathfrak{p}^{f} = N_{K/k}\mathfrak{P}$, f > 1. If we had $\alpha_{K/k}(\mathfrak{a}) = 1$, then $\alpha_{K/k}(\mathfrak{p}) = 1$ as $\alpha_{K/k}$ is separable by (2.14) and so $\mathfrak{p} = N_{K/k}\mathfrak{P}$ which contradicts to f > 1.

(2.20) Remark. Contrary to (2.19), assume that K/k is abelian. Then we know that, for $\alpha \in I(K/k)$,

(2.21) $\alpha = N_{K/k} \mathfrak{A}$ for some ideal \mathfrak{A} in $K \Longrightarrow \alpha_{K/k}(\mathfrak{a}) = 1$.

Again, the converse of (2.21) is not true, except the trivial case where K=k. In fact, let \mathfrak{P} be a prime ideal in K which is unramified for K/k such that $N_{K/k}\mathfrak{P}=\mathfrak{P}^{f}$ with f>1. Since K/k is abelian, there is a prime ideal \mathfrak{q} in k such that $\alpha_{K/k}(\mathfrak{p}\mathfrak{q})=1$. As $\alpha_{K/k}(\mathfrak{q})=\alpha_{K/k}(\mathfrak{p})^{-1}$ in G=G(K/k), the Frobenius elements $\alpha_{K/k}(\mathfrak{p})$ and $\alpha_{K/k}(\mathfrak{q})$ share the same order f in G; in other words, we have $N_{K/k}\mathfrak{Q}=\mathfrak{q}^{f}$, f>1. If we put $\mathfrak{a}=\mathfrak{p}\mathfrak{q}$, then we have $\alpha_{K/k}(\mathfrak{q})=1$ but obviously \mathfrak{a} can not be a norm of an ideal in K because f>1.

§3. Quadratic fields with prime discriminant. Let $l \neq 2$ be a prime and $k=Q(\sqrt{l^*})$, $l^*=(-1)^{(l-1)/2}l$. As the discriminant $\Delta_k=l^*\equiv 1 \mod 4$, k is referred to as a quadratic field of prime discriminant. The ring o_k of integers is given as $o_k=Z+Z\omega$, $\omega=(1+\sqrt{l^*})/2$, and the norm form q_k is

⁷⁾ $p \mid a$ means that p appears in the canonical expression of a.

defined by

(3.1) $q_k(z) = N_{k/q}(x+y\omega) = x^2 + xy + ((1-l^*)/4)y^2, \ z = (x, y).$

Let $h = h_k$ be the class number of k and ε be the fundamental unit of k when $\Delta_k > 0$. By the genus theory, we know that h is odd and $N_{k/Q}\varepsilon = -1$.⁸⁾ Let K be the Hilbert class field of k. One verifies easily that K/Q is a Galois extension. The subgroup H of G = G(K/Q) corresponding to k, i.e., H = G(K/k), is normal in G and the Artin reciprocity map $\alpha_{K/k}$ identifies the ideal class group H_k with H. Let τ be any element of G of order 2. As h is odd, we have $\tau \notin H$ and $G = H \cdot \langle \tau \rangle$, a semidirect product with H normal. We claim that

$$\tau \sigma \tau^{-1} = \sigma^{-1}, \qquad \sigma \in H$$

In fact, since $\mathfrak{p}\mathfrak{p}^{\mathsf{r}} = N_{k/Q}\mathfrak{p} \sim 1$, we have $\tau \sigma_{K/k}(\mathfrak{p})\tau^{-1} = \alpha_{K/k}(\mathfrak{p}^{\mathsf{r}}) = \alpha_{K/k}(\mathfrak{p})^{-1}$ and (3.2) follows from Čebotarev theorem. From (3.2) we see also that G has no center if $h \geq 3$.

Case 1. $h \ge 3$. We identify the monoid I(K/Q) with the monoid of positive integers $a, l \nmid a$. For $p \in I(K/Q)$, i.e., for $p \neq l$, we have (3.3) $\alpha_{K/Q}(p) = 1 \iff p = q_k(z)$ for some $z = (x, y) \in Z^2$.

In fact, this follows from the following chain of equivalences:

 $\alpha_{K/Q}(p) = 1 \iff p \text{ splits completely for } K/Q \iff p \text{ splits completely for } k/Q \text{ and } \mathfrak{p}, \mathfrak{p}|p, \text{ splits completely for } K/k \iff p = N_{k/Q}\mathfrak{p} \text{ and } \alpha_{K/k}(\mathfrak{p}) = 1 \iff p = N_{k/Q}\mathfrak{p} \text{ and } \mathfrak{p} = (\pi), N_{k/Q}\pi > 0, \ \pi = x + y\omega \in \mathfrak{o}_k \iff p = q_k(z), z = (x, y) \in \mathbb{Z}^2.$

Since G(K/Q) has no center, by (2.14) the Artin map is separable and hence we have, for $a \in I(K/Q)$, i.e., for a > 0 with $l \nmid a$,

(3.4) $\alpha_{\kappa/q}(a) = 1 \iff q_k \text{ represents } p \text{ for all } p \mid a^{(10)}$

Case 2. h=1. We have K=k and $G=\langle \tau \rangle$. If we identify G with the group $\{\pm 1\}$ (canonically), the Artin map $\alpha_{\kappa/Q}$ is nothing but the Kronecker character $\chi_k(a)=(a/l), l \nmid a$. Since h=1, we have, for $p \neq l$, 2,

(3.5)
$$\left(\frac{p}{l}\right) = \left(\frac{l^*}{p}\right) = 1 \iff q_k \longrightarrow p,$$

and

$$(3.6) \qquad \qquad \chi_k(2) = 1 \Longleftrightarrow l^* \equiv 1 \bmod 8 \Longleftrightarrow q_k \longrightarrow 2.$$

If we decompose a as $a=2^{e_2} \prod p^{e_p} \prod q^{e_q}$, with (p/l)=1, (q/l)=-1, then we have

No. 6]

⁸⁾ As for elementary facts on quadratic fields, see, for example, T.Ono, An Introduction to Algebraic Number Theory, New York, 1990.

⁹⁾ $\alpha \sim 1$ means that α is a principal ideal.

¹⁰⁾ We say that q_k represents $n \in \mathbb{Z}$ (written: $q_k \to n$) if $n = q_k(z)$ for some $z \in \mathbb{Z}^2$. Needless to say that $\alpha_{K/Q}(a) = 1 \Rightarrow q_k \to a$, by (3.4).

T. ONO

(3.7)
$$\alpha_{\kappa/q}(a) = \begin{cases} (-1)^{\sum e_q}, & l^* \equiv 1 \mod 8, \\ (-1)^{e_2 + \sum e_q}, & l^* \equiv 5 \mod 8. \end{cases}$$

The observation above shows that the generalized Artin map has something to do with the arithmetic of good old days.

References

[1] Cox, D.: Primes of the Form x^2+ny^2 . John Wiley and Sons, New York (1989).¹¹⁾

[2] Ono, T.: A note on the Artin map. Proc. Japan Acad., 65A, 304-306 (1989).