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§1. Introduction. Let p and m be, respectively, a fixed odd prime
number and a fixed integer with (p,m)=1 and let k=@Q(cos(2z/m)) and
K. =k(u,~). Denote by 2, the maximal pro-p abelian extension over K,
unramified outside p. Its odd part 2, contains the field

C=K_(s¥*"|all circular units ¢ of K.,).
The extension 25 /C is of very delicate nature, and for example, when k=@Q,
it is closely related to the Vandiver conjecture at p. We shall give a sys-
tem of generators for the extension 25 /C (except for its “w,-component”) by
using the theory of special units of F. Thaine [3].

§2. Statement of the results. Fix an even Z,valued character x of

4,=Gal(k(p,)/k), and let X’ be the odd character associated to X, i.e., X'=
w,-X~'. Here, w, is the Teichmiiller character of 4,. Since the Galois group
4, acts on the pro-p abelian groups Gal(2;/K.) and Gal(C/K..) in the usual
manner, we can decompose them by the 4,-action. Let 2,(X') be the maximal
intermediate field of 2; /K. fixed by the y-components Gal(2;/K.)(y) for
all odd Z,-valued characters - of 4, except *’. Define the intermediate field
C) of C/K., similarly.
To give a system of generators of the extension 2,(t)/C(x"), we have to
recall from [2] and introduce some notations. For a while, we fix a natural
number » and let K,=%(x,.+). For an abelian group A and an integer N,
we abbreviate the quotient A/NA as A/N. Let M be any power of p.
Regarding (Z/M)[4,] as a subring of (Z/M)[Gal(K,/Q)], we decompose
(Z/M)[Gal(K,/Q)] by the 4,-action. Denote its X-component by 4,,,,,. Let
E, and C, be, respectively, the group of units and that of circular units of
K,. By a theorem on units in a Galois extension and that [E, : C,]1<oo, we
see that there exists a Galois stable submodule C,, of C, such that C,, is cyclic
over the group ring Z[Gal(K,/Q)] and [F, :C;]<co. In the following,
assume that X=trivial (X' #e,). Since ¥=trivial, the X-component (C;/M)(X)
is free and cyclic over 4,,, for any M. Let p*™* be the exponent of
(E,/C(®), and we abbreviate A, simn as 4,,. For an integer ¢, we
denote by ¢, a fixed primitive i-th root of unity. Let

&L= ] (=L)AL

i|mp®
be a fixed generator of (C,/p*™*)(X) over the group ring 4,,;, here ¢, is an
element of 4,,. For a prime number [ with /=1 (mod mp"*'), define an
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element &,() of K,(y,) by
§n(l)=“ml;]m((1—cl LA =E-C)

Let N, be the norm map from K,(¢) to K,. Since /=1 (mod mp"**), we see
that N&()=1. Hence, there exists an element a,() of K,(y) such that
&,(0=a,(D°1"*, g, being a fixed generator of Gal(K,(x)/K,). Put £,(0=
Na,(), which is defined modulo (K})'-!. As in [3], [1] and [2], the elements
£, () play an important role. Consider prime numbers [ such that /=1
(mod mp™+?) and [=1 (mod p®*™*). Then, regarding «,()) as an element of
K} |p*™", we denote by x(l) its X-component. Also, call £%(1) the X-compo-
nent of £,(1) (e K}/p¥™»). Although we want to construct p-ramified
extensions over C(X') by using elements of the form xx()"/*?*™*, we have to
impose some conditions on ! to control ramifications. So, let L, , be the set
of all prime numbers [ with [=1 (mod mp™*?), [=1 (mod p*™*) and such that
[ splits completely in K,(xx(1)¥?***). Then, our result is
Theorem. If X'+#w,, then
2,)=C) (o 2" |¥vn>1, Vl e L, ,, Vo € Gal(K,/Q)).

Remark. When X' =uw,, it is known that 2,(0,)=C(w,) if and only if the
Iwasawa 2 invariant of the cyclotomic Z,-extension over k=@ (cos(2r/m)) is
zero. In particular, when k=@, 2,(0,)=C(0,).

§3. Proof of Theorem. The following lemma gives a prime ideal
decomposition of the principal ideal (xx())).

Lemma 1 ([2, Lemma 8]). Let | be a prime number with [=1 (mod
mp™**) and A be a prime ideal of K, over . Then, there exists a Gal(K,/Q)-
equivariont isomorphism ¢, of the multiplicative group (O,/D* onto the
abelion group (Z/(l—1))[Gal(K,/Q)] such that

(kN =ik, (1) - 2mod ((— 1)1
here I is the free abelian group of all ideals of K,, and elements of the group
ring act on I multiplicatively.

Proof of the imclusion O : For a prime number ! in L, ,, £%(1) is a
p’™®-th power in (Og,/)*. Therefore, by Lemma 1, there exists an ideal
a of K, such that (x2())=a”"". So, we obtain the inclusion D.

To prove the reverse inclusion, it suffices to show that the system
{xr)|e>1, le L,,} is “ample” in the following sense. Let V be the sub-
module of KX®(Q,/Z,) such that

2;=K.(a"""|all a®p~" e V).
The following exact sequence is well known (gee e.g. [4]):

1—>(UE)®@Q,] Z,)—>V—I>lim At —>1(x),
here A, is the p-part of the ideal class group of K, and A; is its even part.
Recall that the homomorphism f is defined as follows: For a®@p-"e V, the
extension K, (a¥?")/K,, is unramified outside p. Then, since all primes of &
above p are infinitely ramified in K., there exists an ideal a of K, such that
(@), =0a*" for some ideal a of K, for sufficiently large s. We define f(a®p~")
to be the class of a.
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Since the group C, of circular units of K, is of finite index in ¥,, we obtain
the following exact sequence by decomposing () by the 4,-action,
1—(UC)®Q,/Z,) )—>V()—>lim A,(X)—>1.
Since 2,(") is generated over K. by V(), and so is C(X) by (UC)®
Q,/Z,))(1), it suffices to prove that for each n>1 and for each ce A,(X),
there exist [ ¢ L, , and « € Z[Gal(K,/Q)] such that
Sa-rxD)Qp ™) =c.

The proof of the inclusion C: Fix a natural number n. Since
(C,/p*™m)(x) is free over the group ring A,, with a generator £3(1), we
identify (C,/p®™?)(x) with 4,, by si(1)«<>1. Define a Galois equivariant
homomorphism + by

P 1 (B, [ 9P P) () —>(Cr/ 9P ") ) = 4,4
6——)6”“"'“.

Lemma 2 ([2, Theorem 5]). For each ideal class ce A,(X), there exist
infinitely many prime ideals 2 e ¢ of degree one satisfying

(1) [=2NQ=1 (mod mp"+!, mod p*™"»),

(2) a-@ilg, =4 (mod p™?) for some a € 4,,,

(3) @ilg,=pB-v (mod p*™») for some € Ay, 1,
here, ¢, is the isomorphism in Lemmao 1.

Now, fix an ideal class ¢ in A,(X), and take a prime ideal 2 in ¢ satisfying the
conditions (1), (2) and (3) in Lemma 2. Then, by (3) and the definition of
¥, we see that
@ (£3(1)) = B+ P (x%(1)) mod p*™» =0 mod p’™"».

This and (1) imply that [=2NQ e L,,. By (2) and Lemma 1, we see that

(- k2(D) = 0y (k4(1)) - 2 mod p*™ P I =r(x%(1)) - 2 mod p*™» 1.
Hence, by the definition of ¢ and the fact that the exponent of A,(X) is
smaller than or equal to p*™® ([1]), we obtain f((«-£:())@p*™*)=c. This
completes the proof of Theorem.
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