28. A Note on the Hilbert Irreducibility Theorem

The Irreducibility Theorem and the Strong
Approximation Theorem*)**)

By Yasuo Morita
Mathematical Institute, Tohoku University
(Communicated by Shokichi IyANAgA, M. J. A., April 12, 1990)

Introduction. Let k be a finite algebraic number field. For any irreducible polynomial $f(t, x) \in k(t)[x]$, let $U_{f, k}$ denote the set consisting of all $s \in k$ such that $f(s, x)$ is defined and irreducible in $k[x]$. A subset of k of this form is called a basic Hilbert subset of k. Further, an intersection of a non-empty Zariski open subset of k and a finite number of basic Hilbert subsets of k is called a Hilbert subset of k.

In this paper, we obtain the following theorem:
Main theorem. Let Ω be the set of all primes of a finite algebraic number field k, let \mathfrak{q} be an element of Ω, and let S be a finite subset of $\Omega-\{q\}$ such that $\Omega-S-\{q\}$ contain's only non-archimedean primes of k. We choose an element $\alpha_{\mathfrak{p}}$ of k for each $p \in S$. Then, for any positive number ε and for any Hilbert subset H of k, there exists an element $\alpha \in H$ such that

$$
\begin{cases}\left|\alpha-\alpha_{p}\right|_{p}<\varepsilon & \text { for any } \mathfrak{p} \in S, \\ |\alpha|_{p} \leq 1 & \text { for any } \mathfrak{p} \in \Omega-S-\{q\}\end{cases}
$$

Clearly, this theorem shows that the Hilbert irreducibility theorem and the strong approximation theorem for k are compatible. It is easy to reduce this theorem to the Hilbert irreducibility theorem if S contains only non-archimedean primes, but it seems nontrivial if S contains archimedean primes.

We prove the theorem by modifying an argument in S. Lang [1], VIII, $\S 1$.

The author would like to thank Professor Peter Roquette for valuable comments.
\S 1. Hilbert sets and rational points of algebraic curves. Let k be a finite algebraic number field, and let H be a Hilbert subset of k. Then, for some non-empty Zariski open subset O of k, we can write $O \cap H=O \cap$ ($\bigcap_{i=1}^{m} U_{f_{i}, k}$), where $f_{i}(t, x)$ is an irreducible polynomial in $k(t)[x]$ and $U_{f_{i}, k}$ is the basic Hilbert subset corresponding to f_{i}. Here, by multiplying an element of $k[t]$ and changing O if necessary, we may assume $f_{i}(t, x) \in k[t, x]$.

Let $f(t, x)$ be one of the $f_{i}(t, x)$. Let $\overline{k(t)}$ be the algebraic closure of $k(t)$, and write $f(t, x)=\alpha(t) \prod_{n=1}^{l}\left(x-\alpha_{n}\right)\left(\alpha(t) \in k[t], \alpha_{n} \in \overline{k(t)}\right)$. Let $f(t, x)=$
*) Dedicated to Professor Ichiro Satake on his sixtieth birthday.
**) This result was obtained when the author was a member of the Sonderforschungsbereich 170, Geometrie und Analysis in Göttingen.
$g(x) h(x)$ be a factorization of $f(t, x)$ in $\overline{k(t)}[x]$. Since $f(t, x)$ is irreducible in $k(t)[x], g(x)$ does not belong to $k(t)[x]$. Hence, at least one coefficient y of $g(x) \in \overline{k(t)}[t]$ does no belong to $k(t)$. Let C denote the affine algebraic curve Spec $k[t, y]$. Then the function field $k(C)=k(t, y)$ of C is a nontrivial extension of $k(t)$.

Let s be an element of the Zariski open subset O, and let $\mathfrak{p}(s)$ be the specialization $t \rightarrow s$. We extend $p(s)$ to a \bar{k}-valued place of $\overline{k(t)}$, and denote it by the same symbol. Let $f(t, x)=g(x) h(x)$ in $\overline{k(t)}[x]$, and let $b(t)$ and $c(t)$ be the leading coefficients of $g(x)$ and $h(x)$, respectively. Then $g(x)$ and $h(x)$ are $\mathfrak{p}(s)$-finite if $b(t), c(t)$ and the α_{k} are $\mathfrak{p}(s)$-finite. Since this assumption excludes only a finite number of elements of O, by changing O if necessary, we may assume that $g(x)$ and $h(x)$ are $\mathfrak{p}(s)$-finite. Then we have a factorization $f(s, x)=p(x) q(x)$ in $\bar{k}[x]$. Put $\eta=y \bmod \mathfrak{p}(s)$. If $f(s, x)=p(x) q(x)$ holds in $k[x]$, then $\eta \in k$. Hence (s, η) is a k-rational point of C.

For any algebraic curve C defined over k, let $C(k)$ denote the set of all k-rational points on C. For any k-rational function t on C, and for any subring R of k, put

$$
\mathcal{U}_{t, R}(C)=\{s \in R ; \text { no } P \in C(k) \text { satisfies } t(P)=s\} .
$$

Then we have the following theorem (cf. [1], VIII, § 1) :
Theorem 1. Let t be a variable over k, and let H be a Hilbert subset of k. Then there exist a non-empty Zariski open subset O of k and a finite number of elements $y^{(i)} \in \overline{k(t)}(i=1,2, \cdots, M)$ such that $y^{(i)} \notin k(t)$ and $O \cap H$ $=O \cap\left(\bigcap_{i=1}^{M} U_{t, k}\left(\operatorname{Spec} k\left[t, y^{(i)}\right]\right)\right)$.
§ 2. Proof of the main theorem. Let $k, \Omega, \mathfrak{q}, S, \alpha_{\mathfrak{p}}(\mathfrak{p} \in S), \varepsilon, H$ be as in the main theorem. Then

$$
R=\left\{\alpha \in k ;|\alpha|_{\mathfrak{p}} \leq 1 \text { for any } \mathfrak{p} \in \Omega-S-\{\mathfrak{q}\}\right\}
$$

is a subring of k. Let t be a variable over k, let y be one of the $y^{(i)}$ in Theorem 1, let $C=C^{(i)}=\operatorname{Spec} k\left[t, y^{(i)}\right]$, and define $U_{t, k}(C)$ and $U_{t, R}(C)$ as in §1.

If C is not absolutely irreducible, then there is an absolutely irreducible algebraic curve C_{1} defined over an extension k_{1} of k such that, for some conjugate C_{1}^{o} of $C_{1}\left(C_{1}^{\sigma} \neq C_{1}\right), C(k)$ is contained in $C_{1}\left(k_{1}\right) \cap C_{1}^{o}\left(k_{1}^{o}\right)$. Since $C_{1}\left(\bar{k}_{1}\right) \cap$ $C_{1}^{s}\left(\bar{k}_{1}\right)$ is a finite set, $C(k)$ is a finite set. Hence the complements of $U_{t, k}(C)$ and $U_{t, R}(C)$ are finite sets. Therefore, to study R-valued points of H and to prove the main theorem, (by replacing O if necessary,) we may assume that C is absolutely irreducible.

If the genus $g(C)$ of $k(C)$ is not 0 , then by Siegel's theorem (cf. [1], p. 127, Theorem 3), the complement of $U_{t, R}(C)$ is a finite set. Hence we may assume $g(C)=0$.

If C has no k-rational points, then $U_{t, k}(C)=k$. Since such curves make no trouble, we may assume that $k(C)$ is a rational function field.

Now we use Néron's trick (cf. [1], p. 144).
Let t, y, C be as above, and let β be an element of k. Let U be a variable over $k(C)=k(t, y)$, let l be an integer ≥ 3, and put $F(U)=U^{l}+\beta, C^{\prime}=$

Spec $k[t, y, U] /(F(U)-t), \quad u=U \bmod (F(U)-t)$. Let $C^{\#}$ and $C^{\prime \#}$ be the complete nonsingular models of C and C^{\prime}. Then there is a covering map

$$
\pi: C^{\prime} \ni P^{\prime}=(t, y, u) \longmapsto(t, y)=P \in C,
$$

and $P^{\prime} \in C^{\prime}(k)$ if and only if $P \in C(k)$ and $u\left(P^{\prime}\right) \in k$. Hence

$$
F(k) \cap U_{t, R}(C)=F(k) \cap U_{t, R}\left(C^{\prime}\right)
$$

Hereafter we study this set.
Now we assume that there exist at least three \bar{k}-rational points P on $C^{\#}$ such that $t(P)=\beta$ or ∞. Let P_{1}, \cdots, P_{r} be all such points. We choose an integer $l \geq 3$ such that, for any $C=C^{(i)}$ which satisfies our assumption, l is prime to the degree $[k(C): k(t)]$ and the ramification indices of these points. We claim that the genus $g\left(C^{\prime}\right)$ of $k\left(C^{\prime}\right)$ is greater than 1 , and hence, by Siegel's theorem, the complement of $U_{t, R}\left(C^{\prime}\right)$ is a finite set.

In fact, since $u^{l}=t-\beta$, the prime divisors of $\bar{k}(t)$ corresponding to the points $t=\beta$ and $t=\infty$ ramify fully in $\bar{k}(t)(u) / \bar{k}(t)$. Hence the ramification index of any prime divisor of $\bar{k}(t)(u)$ which is over $t=\beta$ or $t=\infty$ is exactly l. On the other hand, the ramification indices of P_{1}, \cdots, P_{r} in $\bar{k}(C) / \bar{k}(t)$ are prime to l. Since $\bar{k}\left(C^{\prime}\right)=\bar{k}(C)(u)$, the equality $\left[\bar{k}\left(C^{\prime}\right): \bar{k}(C)\right]=l$ holds, and the ramification index of any point of $C^{\prime \prime}$ which is over one of the P_{1}, \cdots, P_{r} is exactly l. It follows that $C^{\prime \#}$ is absolutely irreducible. Therefore, by the Hurwitz formula, the genus $g\left(C^{\prime}\right)$ of $k\left(C^{\prime}\right)$ satisfies $g\left(C^{\prime}\right) \geq(l+1) / 2 \geq 2$.

Since we have proved the claim, we may assume that the number of the points P on $C^{\#}$ such that $t(P)=\beta$ or ∞ is at most 2 . Since $t-\beta \notin \bar{k}$, it has a pole. Since the degree of the divisor $(t-\beta)$ is zero, there exists exactly one \bar{k}-rational point P_{∞} (resp. P_{β}) on $C^{\#}$ such that $t\left(P_{\infty}\right)=\infty$ (resp. $t\left(P_{\beta}\right)=\beta$). In particular, P_{∞} and P_{β} are k-rational.

Let z be an element of $k(C)$ such that $k(z)=k(C)$, and such that z has a simple pole at P_{∞} and a simple zero at P_{β}. Then $(t-\beta) z^{-r}$ has no pole on $C^{\#}$ for some integer r. It follows $d=(t-\beta) z^{-r} \in k, \neq 0$. Hence $t=\beta+d z^{r}$. Hence, if $P \in C(k)$ satisfies $t(P)=s$, then we can write $s=\beta+d w^{r}$ with some $w \in k$. Since $[k(C): k(t)]=r, r$ is prime to l. Further, since $k(C) \neq k(t)$, $r \geq 2$.

Therefore we have proved the following theorem:
Theorem 2. Let k, H, and R be as before. Let β be any element of k. Then the Hilbert set H contains, up to a finite number of points, a set of the form

$$
\bigcap_{i=1}^{I}\left\{s \in R ; s=\beta+v^{l}(\exists v \in R), s \neq \beta+d_{i} w_{i}^{r_{i}} \text { for any } w_{i} \in k\right\},
$$

where $I, l, r_{i} \in N, r_{i} \geq 2,\left(r_{i}, l\right)=1$, and $0 \neq d_{i} \in k$.
By using Theorem 2, we obtain the main theorem.
Let the notation and assumption be as in the main theorem, and let R be as in the beginning of this section. We use the strong approximation theorem for k, and take an element β of R such that $\left|\beta-\alpha_{p}\right|_{p}<\varepsilon / 2$ holds for all $\mathfrak{p} \in S$. Let I, l, d_{i}, r_{i} be as in Theorem 2. Let \mathfrak{l} be an element of $\Omega-$ $S-\{\mathfrak{q}\}$ such that \mathfrak{l} is prime to d_{i} for all i. Then, if the $\operatorname{order} \operatorname{ord}_{\mathfrak{l}}(s)$ of $s \in k$
at \mathfrak{l} is prime to r_{i}, s is not contained in $d_{i} k^{r_{i}}=\left\{d_{i} w_{i}^{r_{i}} ; w_{i} \in k\right\}$. Since $r_{i} \geq 2$, it follows from the strong approximation theorem that there exists an element $s_{0} \in R$ such that $\left(\operatorname{ord}_{1}\left(s_{0}\right), r_{i}\right)=1$ for all $i \in I$, and $\left|s_{0}\right|_{p}<\varepsilon / 2$ for all $p \in S$. Since $\left(l, r_{i}\right)=1$ for all i, the l-th power $s=\left(s_{0}\right)^{l}$ of s_{0} belongs to $\bigcap_{i=1}^{I}\left\{s \in R^{l}\right.$; $\left.s \notin d_{i} k^{r_{i}}\right\}$. It follows from Theorem 2 that, for a sufficiently small $\varepsilon, \alpha=\beta+$ $s \in R$ is an element of H. Since s and β satisfy $|s|_{p}<\varepsilon / 2$ and $|\beta|_{\phi}<\varepsilon / 2$ for any $\mathfrak{p} \in S, \alpha \in R$ satisfies $|\alpha|_{p}<\varepsilon$ for any $\mathfrak{p} \in S$. This completes the proof of the main theorem.

Reference

[1] S. Lang: Diophantine Geometry. Interscience (1962).

