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A Note on the Hilbert Irreducibility Theorem

The Irreducibility Theorem and the Strong
Approximation Theorem*)’**)

By Yasuo MOIITA
Mathematical Institute, Tohoku University

(Communicated by Shokichi I)N.(,, M. Z. A., April 12, 1990)

Introduction. Let k be a finite algebraic number field. For any irre-
ducible polynomial f(t, x)e k(t)[x], let U, denote the set consisting of all
s e k such that f(s, x) is defined and irreducible in k[x]. A subset of k o
this form is called a basic Hilbert subset of k. Further, an intersection o
a non-empty Zariski open subset of k and a finite number of basic Hilbert
subsets of k is called a Hilbert subset of k.

In this paper, we obtain the ollowing theorem"
Main theorem. Let f2 be the set of all primes of a finite algebraic

number field k, let q be an element of , and let S be a finite subset of
such that 2-S-{q} contains only non-archimedean primes of k. We choose
an element of k for each p e S. Then, for any positive number and for
any Hilbert subset H of k, there exists an element e H such that

{,,o--o] foranypeS,
[_1 for any p e -S-{q}.

Clearly, this theorem shows that the Hilbert irreducibility theorem and
the strong approximation theorem for k are compatible. It is easy to re-
duce this theorem to the Hilbert irreducibility theorem if S contains only
non-archimedean primes, but it seems nontrivial if S contains archimedean
primes.

We prove the theorem by modifying an argument in S. Lang [1], VIII,
1.

The author would like to thank Professor Peter Roquette for valuable
comments.

1. Hilbert sets and rational points of algebraic curves. Let k be a
finite algebraic number field, and let H be a Hilbert subset of k. Then, or
svme non-empty Zariski open subset O ot k, we can write
((= U,,), where f(t, x) is an irreducible polynomial in k(t)[x] and U,, is
the basic Hilbert subset corresponding to f. Here, by multiplying an ele-
ment o k[t] and changing O if necessary, we may assume ft(t, x) e k[t, x].

Let f(t, x) be one of the f(t, x). Let k(t) be the algebraic closure o
k(t), and write f(t, x)=a(t) [=1 (x--a) (a(t) e k[t], a e k(t)). Let f(t, x)=
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g(x)h(x) be a factorization of f(t, x) in k(t)[x]. Since f(t, x) is irreducible
in k(t)[x], g(x) does not belong to k(t)[x]. Hence, at least one coefficient y
of g(x)e k(t)[t] does no belong to k(t). Let C denote the affine algebraic
curve Spec kit, y]. Then the function field k(C)=k(t, y) of C is a nontrivial
extension of k(t).

Let s be an element of the Zariski open subset O, and let p(s) be the
specialization t-s. We extend p(s) to a k-valued place of k(t), and denote
it by the same symbol. Let f(t, x)=g(x)h(x) in k(t)[x], and let b(t) and c(t)
be the leading coefficients of g(x) and h(x), respectively. Then g(x)and h(x)
are (s)-finite if b(t), c(t) and the are (s)-finite. Since this assumption
excludes only a finite number of elements of O, by changing 0 if necessary,
we may assume that g(x) and h(x) are p(s)-finite. Then we have a factoriza-
tion f(s, x)-p(x)q(x) in k[x]. Put v=ymod p(s). If f(s, x)=p(x)q(x) holds
in k[x], then ] e k. Hence (s, V) is a k-rational point of C.

For any algebraic curve C defined over k, let C(k) denote the set of all
k-rational points on C. For any k--rational function t on C, and for any
subring R of k, put

Ut,,(C)--{s e R no P e C(k) satisfies t(P)=s}.
Then we have the following theorem (cf. [1], VIII, 1)"

Theorem 1. Let t be a variable over k, and let H be a Hilbert subset
of k. Then there exist a non-empty Zariski open subset 0 of k and a finite
number of elements y() e k(t) (i= 1, 2, ..., M) such that y() e k(t) and 0 H
=0 l ((= Ut,(Spec kit, y()])).

2. Proof of the main theorem. Letk, /2, q, S, a (peS), e, H be
as in the main theorem. Then

R={a e k; [a[,_l for any

is a subring of k. Let t be a variable over k, let y be one of the y) in Theo-
rem 1, let C--C()=Spec k[t, y()], and define U,(C) and Ut,,(C) as in 1.

If C is not absolutely irreducible, then there is an absolutely irreducible
algebraic curve C defined over an extension k of k such that, for some con-
jugate C of C (C=/=C), C(k) is contained in Cl(k) C;(kl). Since C(k)
C(1) is a finite set, C(k) is a finite set. Hence the complements of U,(C)
and Ut,,(C) are finite sets. Therefore, to study R-valued points of H and
to prove the main theorem, (by replacing O if necessa.ry,)we may assume
that C is absolutely irreducible.

If the genus g(C) of k(C) is not 0, then by Siegel’s theorem (cf. [1],
p. 127, Theorem 3), the complement of Ut,(C) is a finite set. Hence we
may assume g(C)=0.

If C has no k-rational points, then U,(C)=k. Since such curves make
no trouble, we may assume that k(C) is a rational function field.

Now we use Ngron’s trick (cf. [1], p. 144).
Let t, y, C be as above, and let fl be an element of k. Let U be a vari-

able over k(C)----k(t, y), let be an integer _3, and put F(U)=U+, C’=



No. 4] Hilbert Irreducibility Theorem 103

Speck[t, y, U] / (F(U) t) u=Umod (F(U)-t). Let C nd C’ be the com-
plete nonsingular models of C nd C’. Then there is a covering mp

" C’ P’=(t, y, u) (t, y)--P e C,
and P’ e C’(/) if nd only if P e C(k) 3nd u(P’) e k. Hence

F(k) gl U,,(C)=F(h:) [’l U,,,(C’).
Hereafter we study this set.

Now we assume that there exist t least three k-rational points P on C
such that t(P)= or c. Let P, ...,P be all such points. We choose an
integer l3 such that, for ny C--C( which satisfies our assumption, is
prime to the degree [k(C)" k(t)] and the ramification indices of these points.
We claim that the genus g(C’) of k(C’) is greater than 1, and hence, by
Siegel’s theorem, the complement of U,(C’) is finite set.

In fact, since u--t--fl, the prime divisors of k(t) corresponding to the
points t=fl nd t o rmify fully in (t)(u)/f(t). Hence the rmification
index of any prime divisor of (t)(u) which is over t-- or t--c is exactly 1.
On the other hnd, the rmifiction indices of P,..., P in k(C)/k(t) are
prime to 1. Since (C’)--f(C)(u), the equality [(C’)" (C)]---/ holds, and
the ramification index of any point of C’ which is over one of the P, ., P
is exactly 1. It ollows that C’ is bsolutely irreducible. Therefore, by
the Hurwitz ormula, the genus g(C’) of k(C’) satisfies g(C’)_(l+l)/22.

Since we hve proved the claim, we may assume that the number o the
points P on C such that t(P)= or c is at most 2. Since t- e k, it has
pole. Since the degree of the divisor (t--) is zero, there exists exactly one
-rational point P (resp. P) on C such that t(P)--c (resp. t(P)--). In
particular, P and P are k-rational.

Let z be an element of k(C) such that k(z)= k(C), and such that z has a
simple pole at P 3nd a simple zero t P. Then (;--fl)Z has no pole on
C for some integer r. It ollows d-- (t-- )z- e k., =/= 0. Hence t + dz.
Hence, if P e C(k) satisfies t(P)=s, then we can write 8----dw with some
w e k. Since [k(C)" k(t)]--r, r is prime to 1. Further, since k(C)=/=k(t),
r2.

Therefore we have proved the ollowjng theorem"

Theorem 2. Let k, H, and R be as before. Let fl be any element of k.
Then the Hilbert set H contains, up to a finite number of points, a set of the
form

I
r for any w e k},( {s e R; s +v (v e R), s=/=+dw

i=l

where I, l, r e N, r_ 2, (r, /)--1, and O=/=d e k.
By using Theorem 2, we obtain the main theorem.
Let the notation and assumption be as in the main theorem, and let R

be as in the beginning of this section. We use the strong approximation
theorem for k, nd take n element fl of R such that 1fl--],/2 holds for
all peS. LetI, l,d,r be as in Theorem 2. Let : be an element of /2-

S--{q} such that is prime to d for all i. Then, if the order ord (s) of s e k
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at is prime to r, s is not contained in dt--{dw; w e/}. Since r_2,
it follows from the strong pproximation theorem that there exists an ele-
ment so e R such that (ord (So), r,)=l for all i e I, and Is0]/2 for all p e S.
Since (1, r)-- 1 for 11 i, the/-th power s- (s0) o so belongs to (={se R’,
s e dJ’}. It follows from Theorem 2 that, for a sufficiently small
s e R is an element of H. Since s and satisfy Isl/2 and
any p e S, e R satisfies I1,<: for any p e S. This completes the proof of
the main theorem.
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