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1. Introduction. The purpose of this paper is to generalize the
results obtained for binomial differential equations ([9]) to general alge-
braic differential equations. Let a, (7=0,1,---,n; k=0,1,---,q,) be
entire functions without common zero for which a,, -a,,,+0. Put

%qn
qj
Q,(z, W)=ICZ:0 aw*, (g,=deg Q)

and we consider the differential equation (=D.E.)

(1) f Q,(z, W) (W) =Q, (2, w)
i=1
under the condition

We suppose that the D.E. (1) is irreducible over the field of meromorphic
functions in |2|<oco and that it admits at least one nonconstant y-valued
algebroid solution w=w(z) in the complex plane. We say that the
solution w is admissible if
T(r, f|an,,)=0(T(r, w))

for r—oo, possibly outside a set of finite linear measure, where f=a
(j=0,1,---,m; k=0,1, -- -, q,). For example, when all a;, are polynomials,
a transcendental algebroid solution of the D.E. (1) is admissible.

In this paper we denote by E a subset of [0, o0) for which m(E)<co
and by K a positive constant. E or K does not always mean the same
one when they will appear in the following. Further, the term ‘“alge-
broid” (resp. “meromorphic”’) will mean algebroid (resp. meromorphic)
in the complex plane. We use the standard notation of the Nevanlinna
theory of meromorphic ([3]) or algebroid functions ([6], [10], [11]).

2. Lemmas. In this section, we shall give three lemmas for later
use.

Lemma 1. Let v be a transcendental algebroid function such that
v and v’ have at most a finite number of poles. Then, for some positive
constants K, and K, it holds

M(r,)<K,+KryM(r,v) (rekE),
where M(r,v)=max,,_, |v(2)| ([6].
Lemma 2. Let g be a transcendental entire function. Then,
M(r,9)=2M(r, 9)* (rek) ([4D.
Lemma 3. The absolute values of roots of the equation
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2" - 4a,=0
are bounded by
max{n|a,|, (m|a;D"?, ---, (n|a, D"} 7.
3. Theorems. Let w=w(2) be a nonconstant v-valued algebroid
solution of the D.E. (1) under the condition (2). We put
¢,=q and max {q,+7}=p
0<j<n-1
for simplicity.
Theorem 1. 1) If q,<q-+n, then the poles of w are contained in
the set of zeros of a,,.
1) If p<q+n, then
N(@, w)<KN(,1/a,,).
We can prove this theorem as in the case of Theorem 1 in [9] by
means of the test-power test.
Theorem 2. Suppose that p<qg+n and a,, ts a polynomial. Then,
w=w(z) satisfies
min(n, ¢+n—p)log* M (r, w)<K Zk log*M(r,a,)+00ogr) (rekR).
Js

Proof. If w is algebraic, there is nothing to prove. We then
suppose that w is transcendental and M (r,w)>=1 (r¢ E). Let S be the
set of zeros of a,,. S is then a finite set and the poles of w are con-

tained in it by Theorem 1-I). Since w is a solution of the D.E. (1), it
satisfies

(3) Zi}l a1,@,(2, W) Q. (2, w)*~4Q, (2, W W'} = Quz, W) Q, (2, W),
where Qn(z, w)=Q,(, w/a,,. We put for w=w(z)

U@ﬁﬂw“uq+n+gﬁ%uawnw“uk+n

and

ww:immmmmwvw+u
Then .
(4) 0.z, W' =U' () —V(2)

and the poles of U(z) are contained in S. Further, the poles of U’(2)
are also contained in S. In fact, substituting (4) into (3), we have

(5) 304,z 0Qu( 0 U@~ V@Y = Qe w) Que )

and suppose that U’(z) has a pole at z=c¢’ outside S. The left-hand
gside of (5) has then a pole at z=¢’, but the right-hand side of (5) has
no pole at z=¢’, which is a contradiction.

Applying Lemma 1 to U, we have
(6) M@, U)K, +KoyM(@r,U) (rek).

Let 2z, be a point such that

M@, U)=|Uz,)|, |z |=r @ek).

Then,
(7) M@, U)—M@, V)Z|U(2)—V(z,)).
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Since

(8) M DZME,w ™ /(q+D—KMG, w5 M@, 0] /1

and
(9) M@, V)<EM(r, w) QZ:{TM(r, )+ M (r, 0} 147 (re B)

by using Lemma 2 if necessary, where d=dega,,, we have from (6)
10) M@, U)—M@, V)={M@r, U)—K,}/(K;r)—M(r, V)

q-1

Z—IE* M(r, w) —KM(r, w)“[Z {rM(r, @)+ M(r, ank)}+rd] / e,

Further we have for 7=0, -..,n—1
A1) el (z)Q (7, w)Q, (2, w)" " a7 (2,)]

<KM(r, w)qj+q<n—j—1>{% M(r, ajk)} {ﬁ M(r, ank)}/,rd(n-n_
k=0 k=0
Applying Lemma 3 to (5) at =2, and using (7), (10) and (11), we have
M(r, w)m"[l’(“""”""]éK[ max <{§ M(r, a;k)}{}q] M(r, ank)}>1/(n_h
k=0 =0

0<jgn—-1

+ 5 M @)+ MG @)+ [ e D)

which reduces to our inequality to be proved by calculating log* of the
both sides of this inequality.

Theorem 3. Suppose that all a,, are polynomials and that p<<q+n.
Then, any algebroid solution w=w(z) of the D.E. (1) is algebraic.

Proof. By Theorems 1 and 2 we obtain

T, w)y=00ogr) (rek),
which shows that w is algebraic.

4. Application. As a special case of Theorem 3, we have the
following :

Corollary. Suppose that all a, are polynomials. Then, if q,=0 and
¢,<n—j—1 (j=0,1, ---,n—1), any meromorphic solution of the D.E. (1)
is rational.

This is an improvement of corollary in [8] and considering the
following Eremenko’s result ([2]):

“Suppose that the D.E. (1) has an admissible meromorphic solution.
Then,

g,22—j) (G=0,1, -, ),
this is also a generalization of the case of binomial differential equations
(see [1], Lemma 1-(i)) to our case.

5. Conjecture. As in [9], we can give the following conjecture:

Conjecture. When p<qg+n, any algebroid solution of the D.E. (1)
would not be admissible.
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