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1. Introduction. Various kinds of sufficient conditions for the as-
ymptotic behavior of solutions of the quasilinear ordinary differential
system
(N) x’= A(t, x)x+F(t, x)
are obtained by Kartsatos (see Chapter 8 in [2]), where A(t, x) is a real
nX n matrix continuous on R XR, R [0, + c), and F(t, x) is an R-valued function continuous on R X R.

Together with the above system, the ollowing linear system
(L) x’=B(t)x
is concerned, where B(t) is a real nX n matrix continuous on R /.

Hpothesis 1. The zero solution of (L) is uniformly asymptotically
stable.

Hypothesis I holds if and only if the zero solution of (L) is globally
exponential-asymptotically stable (see [5]).

In order to investigate the global behavior o solutions of (N),
Schauder’s fixed point theorem will be applied under the ollowing hy-
pothesis.

Hpothesis 2. All the solutions of (N) for the initial value problems
are uniquely determined.

Theorem 1, in which sufficient conditions or the globally uniform-
asymptotic stability o the zero solution o (N) are given, is a strict exten-
tion of the well known result or the case where A(t, x)--A(t) (see Remark).
In Theorem ’2 the condition on perturbed term which is considered by
Lasota and Opial [3] ensures boundedness of all the solutions of (N) and
the globally uniform attractivity o the zero solution of (N). Moreover in
Theorem 3, sufficient conditions or the globally exponential-asymptotic
stability of the zero solution of x’=A(t,x)x are obtained by using
Liapunov’s second method.

2. Preliminaries. The symbol I’ll will denote a norm in R and the
corresponding norm for nXn matrices. Let C(R +) be the space of R-valued functions continuous on R with the supremum norm I1"[[.

Lemma 1. Hypothesis 1 holds if and only ’if there exist K>I and
>0 such that
( 1 ) IX(t)X(r)II<=K exp (-2(t-r)) for t>=r,
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where X is a fundamental matrix of solutions of (L) (see [1]).
Now we assume that the following hypothesis holds.
Hypothesis 3. There exists a >=0 such that

;: sup llA(s, x)--B(s)llds<= for r>=O.
By he variation of parameters formula, we have or r>=0 and y in C(R /)
such that Y I--<_-r

x(t) X(t)X(r)X.(r)

+ X(t)X(){A(, ())--B()}X()g for t>__r,

where X is a fundamental matrix of solutions o x’ =A(t, g(t))x. Prom (1)
it follows that

IIX(t)X;() exp (t)<=K exp (r)

+K.II ]A(s, y(s))--B(s)]] .,Xv(s)X;(r) exp (2s)ds for tr.
Thus, applying Gronwall’s lemma, we have

Xy(t)Xl(r),, exp (2t)_<_K exp (2r+K .IliA(s, y(s))- B(s).. ds),
which yields the ollowing lemma.

Lemma 2. Suppose that Hypotheses 1 and 3 hold. Then we have for
r>=O and y in C(R +) such that ItyIlGr
( 2 ) IX(t)X;(r) GK exp (K-2(t-r)) for

3. Theorems. The global behavior o solutions of (N) is discussed
in Theorems 1 and 2 by using Schauder’s fixed point theorem.

Theorem 1. Suppose that Hypotheses 1-3 hold and that there exists
a non-negative number C1/{K exp (K3)} such that

3 ) sup F(s, x)Jl ds <=rC for r>= O.

Then all the solutions o (N) are uniformly bounded, and the zero solution

of (N) is uniformly stable and globally uniformly attractive, that is, the
zero solution of (N) is globally uniform-asymptotically stable.

Sketch o/ the proof of Theorem 1. Let a>0 be given arbitrarily.

Choose/>=Ka exp (K)/{1--K exp (K)C}. For 0, e R such that
and i e N, we put

m(i) =max {IA(t, x)ll+llr(t, x)ll t e J,
where J= [r, r+i]. We consider the following subset D(i) in C(J), where
C(J) is the space of continuous functions on J with the supremum norm,

D(i)= {y e C(J)" y satisfies conditions (4)-(6) below}.
( 4 ) y(r) .
( 5 ) ]y(t) liG for t e J.
( 6 ) y(t)- y(s) m(i) It- s] for t, s e J.
From (4)-(6), D(i) is a convex and compact subset in C(J3.

Consider the initial value problem
(N) x’=A(t, y(t))x+F(t, y(t)), x(r)=
for y e D(i). It is easily seen that for y e D(i) there exists one and only
one solution x of (N.) such that
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( 7 ) x(t)=Xv(t)Xl(r)-] X(t)X;l(s)F(s, y(s))ds for t e J.
By (2), (3) and (7) we obtain

x(r)-- and x(t) for t e J.
It ollows that ]x(t)-x(s)][m(i)]t-sl for t, s e J. Thus x belongs to
D(i) or y e D(i).

We can define an operator V" D(i)D(i) by V(y)=xv. It can be ex-
pressed as ollows"

X(t)X;(r)+J: X(t)X;(s)r(s, y(s))ds or t e[V(y)](t) J.
In a similar way to the proo of an analogous part in [4] we can show
that V is continuous on D(i). By applying Schauder’s fixed point theorem,
V has at least one fixed point in D(i). Therefore there exists at least one
solution x(.) o (N), which belongs to D(i). Let J= [r, + ). We obtain
a sequence (x},

(x e C(J)" x satisfies conditions (8)-(9) below, or i e N}.
( 8 ) For t e J, x(t) satisfies (4)-(6) as well as (N).
( 9 ) x(t) =x(v+ i) or tr+ i.
It is clear that (x} is uniformly bounded and equicontinuous on any com-
pact interval in J. According to Ascoli-Arzela’s theorem some subse-
quence of (x} converges uniformly on any compact interval in J, the limit
of which is a solution o (N) passing through at r. From Hypothesis 2
it ollows that for a0, tre exists a fl0 such that i r0 and []]a,
then [x(t)[[gfl or tr, where x(.) is a unique solution of (N) passing
through at r. This implies that all the solutions of (N) are uniformly
bounded.

By a similar argument we can prove the uniform stability. The proof
of the globally uniform attractivity will be published later. Q.E.D.

Remark. The above theorem is some extention of the well known re-

sul as follows" if A(t, z)=A(t) and IA()-B()]g<+ under

pothesis 1, then the ero solution of z’=A(t)z is uniformly asymptotically
stable (see [1]).

In the following theorem we require another condition on the er-
turbed term considered by Lasota and Oial [8].

Theorem Z. Soe that Hgothee 1-8 holg ang that

lim inf --1 sup IlF(s, x)II ds O.
+ T I]x[

Then all solutions of (N) are uniformly bounded and the zero solution of
(N) is globally uniformly attractive.

In a similar manner to the proof of Theorem 1 we can prove the
above. The details will be published later.

For the special case where F(t, x)=O we obtain the following theorem
by using Liapunov’s direct method.
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Theorem 3. Let F(t, x)--O. Suppose that Hypotheses 1-3 hold. Then
the zero solution of
(Q) x’= A(t, x)x
is globally exponential-asymptotically stable.

Shetch of the proof of Theorem 3. Let a0 be given arbitrarily.
From Theorem 1 (or 2) all the solutions of (Q) are uniformly bounded. It
follows that there exists a0 such that if >__0 and IIll then
for tr, where x(.) is a unique solution of (Q) passing through at r. Let

;(t) A(t, x(t)) B(t)I[ or t r

and
U(t,x)=sup{l(t+s; t,x)[]exp(2s)" s>=0} for t>_r, IIx

where (. t, x) is the solution of (L) passing through x at t.
Choose a Liapunov function

W(, x)= U(t, x)exp (-K ; ;(s)ds) or tr,

By a similar way to the proof of Theorem 24.1 in [5], we have for t_>_r,

and

where

exp (-K)llxllW(t, x)GK[[xll
IW(t, x)-W(t, y)IGK x-Yll

W)(t, x(t)) g-W(t, x(t)),

Wq)(t, x)= lim sup {W(t+ h, x+ hA(t, x)x)-- W(t, x)}/ h
k-*O +

for
This implies that the conclusion holds. Q.E.D.
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