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1. Introduction. In his paper [2], Steinfeld characterizes the regular
elements of a ring in terms of quasi-ideals.

The purpose o this note is to extend the above result to a class of ab-
stract affine near-rings. An example is given to show that the result does
not hold or arbitrary near-rings.

For the basic terminology and notation we refer to [1].
2. Preliminaries. Let N be a near-ring, which always means right

one throughout this note.
I A, B and C are three non-empty subsets of N, then AB (ABC) denotes

the set of all finite sums o the orm ab with aJ e A, b e B (abc with

a e A, b e B, c e C), and A B denotes the set of all finite sums o the orm
(a(a’/b)--aka’) with a, a e A, b e B. Note that ABC=(AB)C_A(BC)

in general, and that ABC=(AB)C=A(BC) i ANa, where N is the set of
all distributive elements of N.

A right N-subgroup (left N-subgroup) of N is a subgroup H o (N, /)
such that HN_H (NH_H). A quasi-ideal of N is a subgroup Q o (N, +)
such that QNNQN, Q_Q. Right N-subgroups and left N-subgroups
are quasi-ideals. The intersection of amily of quasi-ideals is gain
quasi-ideal.

Lemma 1. Let e be an idempotent element of a near-ring N, and let R
be a right N-subgroup of N. Then the following assertions hold"

( ) R(Ne)=Re.
(ii) Re is a quasi-ideal of N such that Re=R Ne.
Proof. (i) We have R(Ne)=RNe_Re and Re=Ree_RNe=R(Ne).

So R(Ne) Re.
(ii) Since R and Ne are quasi-ideals o N, it suffices to prove the rela-

tion Re=RNe. As ReRNe, we have to show only RNeRe. Any
element x o R Ne has the orm x=r=ne with r e R, n e N, whence x=ne

nee re e Re.
For an element n ot a near-ring N, (n)((n)) denotes the right (left) N-

subgroup o N generated by n, and [n] denotes the subgroup o (N, /)
generated by n.

An element n o a near-ring N is called regular i n-nxn or some ele-
ment x ot N.
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Lemma 2. Let n be a regular element of a near-ring N. Then the
following assertions hold"

(I) (n)r=[n]Nand(n)=Nn.
(II) There exist idempotent elements e, f in N such that (n)r-----(e)r and

(n)=(f).
Proof. (I) By the regularity o the element n, n e [n]N. Moreover

[n]N is a right N-subgroup o N. So (n)r

_
[n]N. Since the inclusion [n]N

(n) always holds, we have (n)= [n]N. Similarly (n)=Nn.
(II) As n is regular, n=nxn or an x in N. Put e=nx, then e=e and

n--en. Hence n e [e]N and e e [n]N. These results imply [n]N= [e]N. So,
by (I), we have (n)r=(e). Similarly we have (n)=(f) with f2=f__xn.

:. Main result. A near-ring N is called an abstract affine near-ring
if N is abelian and No=N, where No is the zero-symmetric part of N.

Lemma :3. Let a be an element of an abstract affine near-ring N.
Then the following assertions hold"

(A) (a)r [a] + [a]N and (a)N

_
[a]N.

(B) (a)t=[a]+Na and N(a)_Na.
Proof. (A) is evident.

(B) The inclusion [a]+Na_(a) always holds. On the other hand, we
have

N([a] +Na) (No+N)([a] +Na) No[a] +No(Na)+N,
where Nc is the constant part of N. Moreover we have

N0[a] /No=Na and No(Na) _Na.
Hence N([a] /Na)

_
Na [a] /Na. Therefore [a] +Na is a let N-subgroup

o N containing the element a. So we have (a)t [a] +Na. Thus (a)-- [a]
+Na. The above argument shows also N(a) _Na.

For an element n of a near-ring N, we denote n--nO by no and nO by n.
Then n=no+n with no e No, n e N.

It is easy to see that, or elements a, b of an abstract affine near-ring
N, (--a)0= --a0, (a+ b)0=a0-t- b0 and (ab)o=aobo.

Lemma 4. Let a be an element of an abstract affine near-ring N.
Then a is regular if and only if a e [a]Na.

Proof. Suppose that a e [a]Na. Then a has the orm a (ia)na with
integers i and n e N. By the above remark, we have a0= (iao)(n)oao.
Put m= i(n)o, then ao=aomao and m e No. Hence we have

a(m-- mac)a-- a(ma-- mac) a(mao+mac- mac) amao
and

amao (ao+ ac)mao aomao/ ac ao/ ac a.
So a(m--mac)a--a. Thus a is regular.

Since the converse is evident, the proo is complete.
Now we are ready to state the main result of this note.
Theorem. The following assertions concerning an element a of an ab-

stract affine near-ring N are equivalent"



No. 8] Regular Elements 309

(1) a is regular.
(2) (a)r(a)=(a)r (a)t.
(3) (a)r--(a)r, (a)=(a) and the product (a)(a) is a quasi-ideal of N.
Proof. (1)(3): By Lemma 2, we have (a)=(e) with a suitable

idempotent element e o N. Then e=e e (e), and (e) is a right N-subgroup
of N. Hence

(a) (e) (e) (a) (a),
that is, (a)=(a). Similarly (a)=(a).

Again by Lemma 2, we have (a)=(f)=Nf with a suitable idempotent
element f o N. So (a)(a)t=(a)(Nf). Hence, by Lemma 1, the product
(a)(a) is a quasi-ideal of N.

(3)@(2) First we show that (a)r (a)_(a)(a)t. The condition (3) and
Lemma 3 imply

(a) (a)r (a)N [a]N (a)
whence (a)=[a]N. Similarly (a)=Na. So, by [1, Proposition 9.73], we
have
(3.1) (a)=aoNo+[a]N(N and (a)=Noao+N.
From these relations, it follows easily that

(a) (a) aoNo Noao+ [a]N fN
and

(a)r(a)--(aoNo)(Noao)+ [a]N N.
Hence it suffices to show that aoNo Noao_(aoNo)(Noao).

Now, rom the relations (3.1), it ollows also that
(3.2) (a) (aoNo)+ [a]N N and (a) (Noao)--N.The relations (3.1), (3.2) and the condition (3) imply that aoNo=(aoNo) and
Noao--(Noao). tIenee we have

aoNo (aoNo) (aoNo)No(aoNo) (aoNo)(Noao)No
and

Noao (Noao) (Noao)No(Noao) No(aoNo)(Noao)
whence
(3.3) aoNo Noao

_
(aoNo)(Noao)No No(aoNo)(Noao).

On the other hand, since (a)r(a) is a quasi-ideal of N, and since (a)(a),
No--(aoNo)(Noao), by [3, Proposition 2] the product (aoNo)(Noao) is a quasi-

ideal of No. So, by [3, Proposition 3], we hve
(3.4) (aoNo)(Noao)No No(aoNo)(Noao)

_
(aoNo)(Noao).

The relations (3.3) and (3.4) imply aoNoNoao(aoNo)(Noao). Thus we have
(a)r (a), (a)(a),.

Since the inclusion (a)r(a)t (a) (a) always holds, the proof is complete.
(2)@(1): The condition (2) and Lemm 3 imply that

a e (a)r (a)t--(a)(a)(a)N[a]N,
whence (a)r-- [a]N. Similarly (a) =Na. So a e ([a]N)(Na) [a]Na. Thus,
by Lemma 4, a is regular.

4. Remarks. The implications (1)@(2) and (1)@(3) hold or arbitrary
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near-rings. However, the following example shows that neither the asser-
tion (2) nor (3) implies the assertion (1) in general.

Let N-{0, a, b, c} be the near-ring due to [1, Near-rings of low order
(E-21)] defined by the tables

0 a b c

0 a b c 0
a 0 c b a
b c 0 a b
c b a 0 c

Co

0 a b c

0 0 0 0
a a a a
0 0 b 0
a a c a

Then (C)r:(C):N. So, the assertions (2) and (3) hold for the element
But c is not regular, because cxc--a for all elements x of N.
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