81. Mordell-Weil Lattices and Galois Representation. II

By Tetsuji Shioda

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1989)

This is a continuation of the previous note [0] and we use the same notation and the references given there. Detailed accounts will be published elsewhere.

2. Rational elliptic surfaces. From now on, we suppose that S is a rational elliptic surface with a section O; then $C = P^1$, K = k(t) (t: a variable over k). The assumption (*) on the non-smoothness of $f: S \rightarrow C$ is automatically satisfied. For such a surface S, the arithmetic genus $\chi = 1$ and every section of f is an exceptional curve of the first kind on S, and conversely. The Néron-Severi group NS(S) is a unimodular lattice of rank $\rho = 10$, and (1.8) implies $r + \sum_{v \in R} (m_v - 1) = 8$, and hence $r \leq 8$.

For r=8, 7 or 6, the structure of the Mordell-Weil lattice E(K) is completely described by the following theorem:

Theorem 2.1. (i) If f has no reducible fibres $(R=\phi)$, then r=8 and $E(K)=E(K)^{\circ} \simeq E_{\ast}$.

(ii) If there is only one reducible fibre $f^{-1}(v)$ and $m_v=2$, then r=7 and $E(K) \simeq E_7^*$

$$\bigcup_{E(K)^{0} \simeq E_{\tau}} \bigcup_{index 2.}$$

(iii) If there is only one reducible fibre $f^{-1}(v)$ and $m_v=3$, then r=6 and $E(K) \simeq E_6^*$

U	U	index	3.
$E(K)^{\circ} \simeq$	$E_{\scriptscriptstyle 6}$		

(iv) If there are only two reducible fibres $R = \{v, v'\}$ with $m_v = m_{v'} = 2$, then r = 6 and

$$egin{array}{lll} E(K)\simeq D_6^* & \ \cup & \cup & index \ 4. \ E(K)^\circ\simeq D_6 & \end{array}$$

In the above, E_{s} , E_{τ} , E_{ϵ} and D_{ϵ} stand for the root lattices of designated type and * denotes their dual lattices (cf. [1, Ch. 6], [2, Ch. 4]). In particular, E_{s} is a positive-definite even unimodular lattice, which is unique up to isomorphism. Of course, we could continue the above result to lower r; for instance, if #R=1 and $m_{v}=4$ or 5, then $E(K)\simeq D_{s}^{*}$ or A_{4}^{*} , and so on.

Now, for any $P \in E(K)$, $P \neq O$, we have by (1.12):

(2.1)
$$\langle P, P \rangle = 2 + 2(PO) - \begin{cases} 0 & \text{case (i) or } P \in E(K)^{\circ} \\ 1/2 & \text{case (ii), } P \in E(K) - E(K)^{\circ} \\ 2/3 & \text{case (iii), } & " \\ 1 \text{ or } 1/2 & \text{case (iv), } & " \end{cases}$$

No. 8] Mordell-Weil Lattices and Galois Representation. II

This shows, in particular, that E(K) is torsion-free in these cases. In general, we call $P \in E(K)$ a minimal point or minimal section if $\langle P, P \rangle$ has the smallest positive value in the Mordell-Weil lattice.

On the other hand, we know the following table ([1], [2] or [6, Ch. 4]):

(2.2)		${m E}_8$	E_7	E_7^*	${E}_{6}$	E_6^*	D_6	D_6^*
	determinant	1	2	1/2	3	1/3	4	1/4
	minimal norm	2	2	3/2	2	4/3	2	1 (3/2)
	# min. vectors	240	126	56	72	54	60	12 (64)
	Automorphisms	$W(E_8)$	W(I)	$W(E_7)$		$W(E_6)\{\pm 1\}$	$W(D_6)\{arepsilon\}$	
	#Aut	$2^{14}3^{5}5^{2}7$	$2^{10}3^{4}5 \cdot 7$		$2^{7}3^{4}5 \cdot 2$		$2^5 \cdot 6! \cdot 2$	

Table

In the table, $W(E_{s})$, etc. denote the Weyl groups.

Theorem 2.2. The number of the minimal sections of the Mordell-Weil lattice E(K) is 240 if r=8, 56 if r=7, 54 or 12 if r=6. They contain a minimal set of generators of E(K) in case (i), (ii) or (iii), while the next minimal sections of norm 3/2 are also needed in case (iv).

Corollary 2.3. The Mordell-Weil group of a rational elliptic surface is generated by the sections P with $\langle P, P \rangle \leq 2$, at least if $r \geq 6$.

Question 2.4. Is the Mordell-Weil group of any elliptic surface generated by the sections P with $\langle P, P \rangle \leq 2\chi$, χ being the arithmetic genus of the surface?

As for the torsion, we have:

Proposition 2.5. The order of $E(K)_{tor}$ for a rational elliptic surface is one of the following values: 1, 2, 3, 4, 5, 6, 8 or 9. Conversely, each of these orders can occur.

3. Weierstrass form. Let us make the results in §2 more explicit by writing the equation of the elliptic curve E over K=k(t) in the Weierstrass form. For simplicity, we assume char $(k) \neq 2$, 3. Suppose that the minimal Weierstrass equation of E over K is given by

 $(3.1) y² = x³ + p(t)x + q(t), p(t), q(t) \in k[t].$

Then the Kodaira-Néron model $f: S \rightarrow P^1$ is a rational elliptic surface if and only if deg $p(t) \leq 4$, deg $q(t) \leq 6$ and $\Delta = 4p(t)^3 + 27q(t)^2$ is not a constant in k.

Lemma 3.1. Let $P = (x, y) \in E(K)$, $P \neq O$. Then the section (P) is disjoint from the zero section (O) if and only if x and y are polynomials in t of degree ≤ 2 or ≤ 3 , i.e., of the form:

(3.2) $x = gt^2 + at + b$, $y = ht^3 + ct^2 + dt + e$, with a, b, ..., g, $h \in k$.

By (2.1) and Theorem 2.2, we have:

Theorem 3.2. Let $f: S \rightarrow P^1$ be a rational elliptic surface.

(i) If f has no reducible fibres, there are exactly 240 points P = (x, y) of the form (3.2), and they contain a set of 8 free generators of the Mordell-Weil group E(K).

297

(ii) If there is only one reducible fibre $f^{-1}(v)$, we may take $v = \infty$. In case $m_{\infty} = 2$, then there are exactly 56 points (x, y) of the form: (3.3) x = at+b, $y = ct^2 + dt + e$,

and they contain a set of 7 free generators of E(K).

(iii) Similarly, if $f^{-1}(\infty)$ is the only reducible fibre and $m_{\infty}=3$, then there are exactly 54 points of the form (3.3), and they contain a set of 6 free generators of E(K),

(iv) If there are only two reducible fibres, we may assume they lie over v=0 and ∞ . In case $m_0=m_{\infty}=2$, then there are 12 points of the form (3.3) with b=e=0 and 32 points of the form (3.3) with $be\neq 0$. They contain a set of 6 free generators of E(K).

In general, for an elliptic surface $f: S \to C$, let $f^{-1}(v)^*$ denote the smooth part of the fibre $f^{-1}(v)$, which is a commutative algebraic group. Let $sp_v: E(K) \to f^{-1}(v)^*$ be the specialization homomorphism: for any $P \in E(K)$, $sp_v(P)$ is the unique intersection point of the section (P) with the fibre $f^{-1}(v)$.

Lemma 3.3. Suppose that $f^{-1}(\infty)$ is a singular fibre of type II (a rational curve with a cusp). Then $f^{-1}(\infty)^*$ is the additive group G_a , and the specialization map $sp_{\infty}: E(K) \rightarrow G_a(k)$ takes the point P of the form (3.2) to $sp_{\infty}(P) = g/h$ (note $g \cdot h \neq 0$ in this case).

Lemma 3.4. In case $E(K) \simeq E_s$, the 240 minimal sections are mapped to 240 distinct values of k under the specialization map sp_{∞} .

4. Examples. Let us give some explicit examples, chosen mostly from elliptic surfaces of Delsarte type (cf. [10], [11]). These examples alone provide rather interesting extensions of cyclotomic fields, having the Galois representation of type E_8, \cdots on the Mordell-Weil lattice (cf. the part III). Moreover, in such an extension, we can *explicitly* write down the minimal sections (and hence the generators) of the Mordell-Weil group, or equivalently, the exceptional curves of the first kind on the elliptic surface. If we change the viewpoint, we have a systematic method to realize the lattice of type E_8, E_6 , etc. in certain cyclotomic fields or their extensions.

Assume for simplicity that char(k)=0, and let $\gamma \in k$, $\gamma \neq 0$, unless otherwise stated. As before, let K = k(t), and $\zeta_m = e^{2\pi i/m}$.

(4.1)
$$y^2 = x^3 + \gamma x + t^5$$
 (cf. [11])

The singular fibres are all irreducible: indeed, there are one of type II at $t=\infty$, ten of type I₁ (a rational curve with a node) at $t\neq\infty$. Hence r=8, and $E(K)\simeq E_8$. The specialization map sp_{∞} gives an isomorphism of E(K) onto $Z[\zeta_{20}](\gamma/G)^{1/20}$, where $G \in Q(\zeta_{20})$ is independent of γ and $(\gamma/G)^{1/20}$ is a fixed 20-th root of γ/G . The 240 values corresponding to the minimal sections are given by

$$\eta_i \zeta_{20}^j (\gamma/G)^{1/20}$$
 (1 $\leq i \leq 12, 1 \leq j \leq 20$),

where η_i are certain units ($i \leq 8$) or 5-times units (i > 8) in $Q(\zeta_{20})$.

$$(4.2) y^2 = x^3 + \gamma + t^5$$

$$(4.3) y^2 = x^3 + \gamma t + t^5$$

In both cases, there are six singular fibres of type II, and hence $E(K) \simeq$

E_{s} . The specialization map sp_{∞} gives an isomorphism

 $E(K) \simeq Z[\zeta_{30}](\gamma/G)^{1/30}$ or $Z[\zeta_{24}](\gamma/G)^{1/24}$

where $G \in Q(\zeta_{30})$ or $Q(\zeta_{24})$. In all three examples, the isomorphism is compatible with the action of the Galois group. Geometrically, it shows that the monodromy around $\gamma = 0$ is finite and of order 20, 30 or 24. Note that, for $\gamma = 0$, the Mordell-Weil group degenerates to O.

$$(4.4) y^2 = x^3 + \gamma x + t^6$$

All the singular fibres are of type I_1 and hence r=8. This example is treated in [8], where 8 sections generating a subgroup of index 4 in E(K) are given. Of course, one can give full generators.

$$(4.5) y^2 = x^3 + \gamma t x + t^5$$

(4.6)

(4.9)

This has a singular fibre of type III (two smooth rational curves tangent at a common point) over t=0, and other fibres are irreducible. Hence r=7 and $E(K)\simeq E_7^*$. The specialization map $sp_{\infty}: E(K)\to Z[\zeta_{14}](-7)^{1/14}$ is surjective, with kernel of rank 1, but it maps the 56 minimal sections to distinct values.

$$y^2 = x^3 + \gamma t^2 + t$$

There is a singular fibre of type IV (three smooth rational curves meeting at one point transversally) over t=0, one of type II over $t=\infty$ and six of type I₁. Hence r=6 and $E(K)\simeq E_6^*$. The specialization map sp_0 gives an isomorphism:

(4.7)
$$E(K) \simeq Z[\zeta_{\mathfrak{g}}](\gamma/G)^{1/18} \qquad (G \in Q(\zeta_{\mathfrak{g}})).$$
$$y^2 = x^3 + (t+t^3)x + \gamma t^3$$

There are two reducible fibres over t=0 and ∞ , both of type III, and other fibres are irreducible. Hence r=6 and $E(K) \simeq D_6^*$.

 $(4.8) y^2 + 7xy = x^3 + t^5$

This has a singular fibre of type I₅ (five smooth rational curves forming a pentagon) over t=0, one of type II over $t=\infty$. We have r=4 and $E(K) \simeq A_4^*$. Further the specialization map gives an isomorphism $sp_0: E(K) \simeq Z[\zeta_5] \cdot r^{1/5}$.

$$y^2 + \gamma xy = x^3 + t^n$$

This elliptic surface is rational only for $m \le 6$, and a K3 surface for $7 \le m \le 12$. For m = 8, 9, 10 or 12, these elliptic K3 surfaces give examples for which the Mordell-Weil lattice E(K)/(tor) is not equal to the dual lattice of the narrow Mordell-Weil lattice. Hence the assumption of Theorem 1.4 that the Néron-Severi lattice be unimodular is not superfluous.

Reference

 [0] T. Shioda: Mordell-Weil lattices and Galois representation. I. Proc. Japan Acad., 65A, 268-271 (1989).