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(Communicated by KSsaku YOSIDA, M. J. A., Oct. 12, 1989)

1. Introduction. Let denote the class of functions of the form

(1.1) f(z)--z/ az (n e /--{1,2, 3, ...])
k=n+l

which are analytic in the unit disk
A function f(z) in the class is said to he a member of the class

-/(a) if it satisfies

(1.’2) f(z)---I <1-- (ze cU)
z

or some a (0a<l).
Let the functions f(z) and g(z) be analytic in the unit disk cU. Then

the unction f(z) is said to be subordinate to g(z) i there exists a unction
w(z) analytic in cU, with w(0)=0 and Iw(z)I 1 (z e cU), such that
(1.3) f(z)-- g(w(z)) (z e U).
We denote this subordination by
(1.4) f(z) 4 g(z).
In particular, i g(z) is univalent in U, then the subordination (1.4) is equiv-
alent to f(0)--g(0) and f(cU)cg(CU) (c. [2]).

This concept o subordination can be traced to LindelS [5], but Little-
wood ([6], [7]) and Rogosinski ([10], [11]) introduced the term and discovered
the basic properties.

For a function f(z) belonging to the class //, we define the generalized
Libera integral operator Jc by

(1.5) Jc(f(z)) _c_-_k_ 1 i tc-lf(t)dt (c> 0).
Z

The operator J, when c e , was introduced by Bernardi [1]. In partic-
ular, the operator J was studied earlier by Libera [4] and Livingston [8].

2. Properties of the operator Jc. In order to derive our results, we
have to recall here the ollowing lemma due to Miller and Mocanu [9] (also
Jack [3]).

Lernrna. Let the function
(2.1) w(z)-- bz + b iz
be regular in the unit disk cU with w(z)O (z e cU). If Zo=roei (r0<l) and
(2.2) W(Zo) max w(z)

Izl=<ro
then

)
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(2.3) ZoW’(Zo) mW(Zo),
where m is real and m

_
n 1.

Applying the above lemma, we prove
Theorem 1. If a function f(z) defined by (1.1) is in the class n(C),

then

(2.4) _c())_ 41 / (1--a)z
z n/l

Proof. It is clear or f(z)_z (z e cU). Then we assume that f(z)z
(z e cU). Define the unction w(z) by

(2.5) Jc(f(z)) 1 q- (1-- c)w(z)
z n/l

or f(z) e (a), then we see that w(z) bz / b z / is regular in cU
and w(z)O (z e cU). Note that

(2.6) (Jcf(Z))’= -c -Jc(f(z)) /(c/ 1) f(z)_.

Therefore, i ollows rom (2.5) and (2.6) that

(2.7) f(z) l_ l-- (w(z) + ZW’(Z) ).z n+l c+1
Suppose that there exists a point z0 e cU such that

max w(z)1 w(z0) 1.

Then, with the aid of Lemma, we hve

(2.8) f(Zo) _11 1-- Iw(z0) + ZoW’(Zo)
z0 n+l c+1

_1--(1+ m )> (1--a)(n+c+X) >l_a
n+l c+1 (n+l)(c+l)

which contradicts that f(z) e n(a). This shows that Iw(z)1 1 for all z
that is, that

J(f(z)) 1+ (1--a)z.
z n/l

Taking c--0 in Theorem 1, we have
Corollary 1. If f(z) e (), then

z t n/l
Next, we have
Theorem 2. If a unction f(z) defined by (1.1) is in the class (o),

then

(2.10) Re {d Jc(f(z)) }O (zeU),
z

where

(2.11) 1/31< r --sin- ( 1- )=-2-
The bound of 1/31 is best possible for the function f(z) defined by
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(2.12)

Proof.

(2.13) Jc(f(z)) --1 1--o
z n/l

Therefore, it follows rom (2.13) that

Re {e Jc(f(z))}>0
tor

f(z)=z/ (1--a)(n/ c-+ 1)
(n/l)(c/l)

By virtue o Theorem 1, we see that

Further, the bound o
fined by

(2.14)

which is equivalent to (2.12).
Letting c=0 in Theorem 2, we have
Corollary 2. If f(z) e n(), then

(2.15) Re e- I:.f(t) dr}>0
where

(z e U).

(ze q2)

i?1< u _sin_ (1-_)=5
/?1 is best possible for the function f(z)e /(a) de-

Jc(f(z)) 1+ (1--o0z
z n/l

(z e U),

The bound of 11 is best possible for the function f(z) defined by

(2.16) f(z) z/ (1--)z 1.
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