72. Iwasawa's λ -invariants of Certain Real Quadratic Fields

By Takashi FUKUDA

Department of Mathematics, Faculty of Science, Yamagata University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

We studied Greenberg's conjecture (cf. [3]) on real quadratic case in previous papers [1] and [2]. Two natural numbers n_1 and n_2 were defined in [1]. We treated the case $n_1 < n_2$ in [1] and the case $n_1 = n_2 = 2$ in [2]. In this paper, we shall make further investigation in the case $n_1 = n_2 = 2$.

Let k be a real quadratic field with class number h, p an odd prime number which splits in k/Q and

 $k = k_0 \subset k_1 \subset \cdots \subset k_n \subset \cdots \subset k_\infty$

the cyclotomic Z_p -extension with Galois group $G(k_{\infty}/k) = \overline{\langle \sigma \rangle}$. Let $p = \mathfrak{p}\mathfrak{p}'$ be the prime factorization of p in k and \mathfrak{p}_n (resp. \mathfrak{p}'_n) the unique prime ideal of k_n lying above \mathfrak{p} (resp. \mathfrak{p}'). Let A_n be the p-primary part of the ideal class group of k_n and put $D_n = \langle \operatorname{cl}(\mathfrak{p}_n) \rangle \cap A_n$, $B_n^{(r)} = \{a \in A_n \mid a^{\sigma_{r-1}} = 1\}$ for $0 \leq r \leq n$ where $\sigma_r = \sigma^{p^r}$. We put $B_n = B_n^{(0)}$. The norm maps $N_{n,m} \colon k_n \to k_m \ (0 \leq m \leq n)$ are applied to A_n , the unit group E_n of k_n and etc.

From now on we assume that $n_1 = n_2 = 2$. (See [1] on the definition of n_1 and n_2 .) In this case, the following lemma which was proved in [1] and [3] is fundamental.

Lemma 1. Let k be a real quadratic field and p an odd prime number which splits in k/Q. Assume that

 $(1) \quad n_1 = n_2 = 2, and$

 $(2) A_0 = 1.$

Then, $|B_n| = p$, $E_0 \cap N_{n,0}(k_n^{\times}) = E_0^{p^{n-1}}$, and $(B_n: D_n) = (E_0 \cap N_{n,0}(k_n^{\times}): N_{n,0}(E_n))$ for all $n \ge 1$. Furthermore, $\mu_p(k) = \lambda_p(k) = 0$ if and only if $D_n \ne 1$ for some $n \ge 1$.

Now we assume that $D_r=1$ for some $r \ge 1$ and choose $\alpha_r \in k_r$ such that $\mathfrak{p}_r^{\prime h} = (\alpha_r)$. We define the natural number $n_1^{(r)}$ by

$$p^{n_1^{(r)}} \| (N_{r,0}(\alpha_r)^{p-1} - 1).$$

Since $N_{r,0}(E_r) = E_0^{p^r}$ from Lemma 1, $n_1^{(r)}$ is uniquely determined under the condition $r+1 \le n_1^{(r)} \le r+2$. For $k^* = k(e^{2\pi \sqrt{-1}/p})$, we have the following result.

Proposition. Let k and p be as in Lemma 1. In addition to the assumptions (1) and (2) of Lemma 1, we assume that

(3) $\lambda_p^{-}(k^*)=1$, and

(4) $D_r = 1$ for some $r \ge 1$.

Then, $D_{r+1} \neq 1$ is and only if $n_1^{(r)} = r+1$. In particular, $\mu_p(k) = \lambda_p(k) = 0$ if $n_1^{(r)} = r+1$.

For the Proof of Proposition, we need some lemmas. Let K_n denote

261

the completion of k_n at \mathfrak{p}_n . Let $U_n = \{u \in K_n : \text{unit} | u \equiv 1 \pmod{\mathfrak{p}_n}\}$ and $U_n^{(r)} = \{u \in U_n | N_{n,0}(u) \equiv 1 \pmod{p^{n+r+1}}\}$ for $0 \leq r \leq n$.

Lemma 2. Under the same assumptions as in Lemma 1, $N_{n+1,n}(U_{n+1}) = U_n^{(1)}$ for all $n \ge 0$.

Proof. Clearly $N_{n+1,n}(U_{n+1}) \subset U_n^{(1)} \subset U_n$. The composite map of $N_{n,0}$: $U_n \rightarrow 1 + p^{n+1}Z_p$ and $1 + p^{n+1}Z_p \rightarrow 1 + p^{n+1}Z_p/1 + p^{n+2}Z_p$ is surjective and its kernel is $U_n^{(1)}$. Therefore $U_n/U_n^{(1)} \cong Z/pZ$. On the other hand, we see that $U_n/N_{n+1,n}(U_{n+1}) \cong G(K_{n+1}/K_n) \cong Z/pZ$ by local class field theory. Hence $N_{n+1,n}(U_{n+1}) = U_n^{(1)}$.

Lemma 3. Assume that A_n is cyclic in addition to the assumptions of Lemma 1. If $D_n=1$ for some $n\geq 1$, then $A_{n+1}=B_{n+1}^{(n)}$ and its order is p^{n+1} .

Proof. We proceed by induction on n. First we have to show that $A_1=B_1$. Note that $|B_1|=p$ from Lemma 1. Assume that $B_1 \cong A_1$. Then there exists $a \in A_1$ such that $a^{\sigma-1} \neq 1$ and $a^{(\sigma-1)^2}=1$. It is easy to see that there exist $u \in Z_p[G(k_1/k)]^{\times}$ and $v \in Z_p[G(k_1/k)]$ such that $1+\sigma+\cdots+\sigma^{p^{-1}}=(\sigma-1)^2v+pu$. Since $|A_0|=1$, we see that $a^p=1$ and $a \in B_1$ because A_1 is cyclic by assumption, and this is a contradiction. Next we assume that proposition holds for n-1. Since $D_n=1$, $N_{n,0}(E_n)=E_0^{p^n}$ from Lemma 1. It follows from Lemma 2 that an element of E_n is a local norm from k_{n+1} at \mathfrak{p}_n . Since any place which does not lie above p is unramified in k_{n+1}/k_n , the product formula of norm residue symbol and Hasse's norm theorem imply that $E_n \subset N_{n+1,n}(k_{n+1}^{\times})$. Then by the genus theory for k_{n+1}/k_n ,

$$|B_{n+1}^{(n)}| = |A_n| \frac{p^2}{p(E_n: E_n \cap N_{n+1,n}(k_{n+1}^{\times}))} = p^{n+1}.$$

Now assume that $B_{n+1}^{(n)} \subseteq A_{n+1}$ and choose $a \in A_{n+1}$ such that $a^{\sigma_n - 1} \neq 1$ and $a^{(\sigma_n - 1)^2} = 1$. As above, by taking $u \in \mathbb{Z}_p[G(k_{n+1}/k_n)]^{\times}$ and $v \in \mathbb{Z}_p[G(k_{n+1}/k_n)]$ such that $1 + \sigma_n + \cdots + \sigma_n^{p-1} = (\sigma_n - 1)^2 v + pu$, we have $a^{p^{n+1}} = 1$ because $|A_n| = p^n$. Since A_n is cyclic, it follows that $a \in B_{n+1}^{(n)}$ which is a contradiction.

Proof of Proposition. Assume that $D_{r+1}=1$. Then $\mathfrak{p}_{r+1}^{\prime h}=(\alpha_{r+1})$ for some $a_{r+1} \in k_{r+1}$. Put $\alpha_r = N_{r+1,r}(\alpha_{r+1})$. Then $\mathfrak{p}_r^{\prime h}=(\alpha_r)$ and \mathfrak{p}^{r+2} divides $(N_{r,0}(\alpha_r)^{p-1}-1)$. Hence $n_1^{(r)}=r+2$. Conversely assume that $n_1^{(r)}=r+2$. Let α_r be an element of k_r such that $\mathfrak{p}_r^{\prime h}=(\alpha_r)$. It follows that there exists $\alpha_{r+1} \in k_{r+1}$ such that $\alpha_r^{p-1}=N_{r+1,r}(\alpha_{r+1})$ from Lemma 2 and Hasse's norm theorem. Since $N_{r+1,r}(\mathfrak{p}_{r+1}^{\prime (p-1)h}(\alpha_{r+1}^{-1}))=\mathfrak{p}_r^{\prime (p-1)h}(\alpha_r^{-1})^{(p-1)}=(1), \mathfrak{p}_{r+1}^{\prime (p-1)h}(\alpha_{r+1}^{-1})=\mathfrak{a}_{r+1}^{\sigma_r-1}$ for some ideal α_{r+1} of k_{r+1} . Thus $D_{r+1}\subset A_{r+1}^{\sigma_r-1}$. Now the assumption (3) and the reflection theorem imply that A_n is cyclic for all $n\geq 1$. Hence $D_{r+1}=1$ from Lemma 3.

When p=3, we calculated $N_{1,0}(E_1)$ and gave some examples of k such that $D_1 \neq 1$ in [2]. For those k's with $D_1=1$, we calculated $n_1^{(1)}$ and obtained the following theorem.

Theorem. Let p=3 and $k=Q\sqrt{m}$) where $m=106, 253, 454, 505, 607, 787, 886, 994, 1102, 1294, 1318, 1333, 1462, 1669, 1753, or 1810. Then these k's satisfy all assumptions of proposition and moreover <math>n_1^{(1)}=2$. Hence $\mu_3(k)=\lambda_3(k)=0$ for the above values of m's.

T. FUKUDA

Remark. For m=295, 397, 745, or 1738, we have $n_1^{(1)}=3$ and $D_2=1$. But the calculation of $n_1^{(2)}$ is difficult since k_2/Q is an extension of degree 18.

References

- [1] T. Fukuda and K. Komatsu: On Z_p -extensions of real quadratic fields. J. Math. Soc. Japan, 38, 95-102 (1986).
- [2] T. Fukuda, K. Komatsu, and H. Wada: A remark on the λ-invariant of real quadratic fields. Proc. Japan Acad., 62A, 318-319 (1986).
- [3] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).