72. Iwasawa's 久-invariants of Certain Real Quadratic Fields

By Takashi Fukuda
Department of Mathematics, Faculty of Science, Yamagata University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1989)

We studied Greenberg's conjecture (cf. [3]) on real quadratic case in previous papers [1] and [2]. Two natural numbers n_{1} and n_{2} were defined in [1]. We treated the case $n_{1}<n_{2}$ in [1] and the case $n_{1}=n_{2}=2$ in [2]. In this paper, we shall make further investigation in the case $n_{1}=n_{2}=2$.

Let k be a real quadratic field with class number h, p an odd prime number which splits in k / \boldsymbol{Q} and

$$
k=k_{0} \subset k_{1} \subset \cdots \subset k_{n} \subset \cdots \subset k_{\infty}
$$

the cyclotomic Z_{p}-extension with Galois group $G\left(k_{\infty} / k\right)=\overline{\langle\sigma\rangle}$. Let $p=\mathfrak{p p}^{\prime}$ be the prime factorization of p in k and \mathfrak{p}_{n} (resp. $\mathfrak{p}_{n}^{\prime}$) the unique prime ideal of k_{n} lying above \mathfrak{p} (resp. \mathfrak{p}^{\prime}). Let A_{n} be the p-primary part of the ideal class group of k_{n} and put $D_{n}=\left\langle\operatorname{cl}\left(\mathfrak{p}_{n}\right)\right\rangle \cap A_{n}, B_{n}^{(r)}=\left\{a \in A_{n} \mid a^{\sigma_{r-1}}=1\right\}$ for $0 \leqq r \leqq n$ where $\sigma_{r}=\sigma^{p^{r}}$. We put $B_{n}=B_{n}^{(0)}$. The norm maps $N_{n, m}: k_{n} \rightarrow k_{m}(0 \leqq m \leqq n)$ are applied to A_{n}, the unit group E_{n} of k_{n} and etc.

From now on we assume that $n_{1}=n_{2}=2$. (See [1] on the definition of n_{1} and n_{2}.) In this case, the following lemma which was proved in [1] and [3] is fundamental.

Lemma 1. Let k be a real quadratic field and p an odd prime number which splits in k / \boldsymbol{Q}. Assume that
(1) $n_{1}=n_{2}=2$, and
(2) $A_{0}=1$.

Then, $\left|B_{n}\right|=p, E_{0} \cap N_{n, 0}\left(k_{n}^{\times}\right)=E_{0}^{p n-1}$, and $\left(B_{n}: D_{n}\right)=\left(E_{0} \cap N_{n, 0}\left(k_{n}^{\times}\right): N_{n, 0}\left(E_{n}\right)\right)$ for all $n \geqq 1$. Futhermore, $\mu_{p}(k)=\lambda_{p}(k)=0$ if and only if $D_{n} \neq 1$ for some $n \geqq 1$.

Now we assume that $D_{r}=1$ for some $r \geqq 1$ and choose $\alpha_{r} \in k_{r}$ such that $\mathfrak{p}_{r}^{\prime h}=\left(\alpha_{r}\right)$. We define the natural number $n_{1}^{(r)}$ by

$$
\mathfrak{p}^{p_{1}^{(r)}} \|\left(N_{r, 0}\left(\alpha_{r}\right)^{p-1}-1\right) .
$$

Since $N_{r, 0}\left(E_{r}\right)=E_{0}^{p^{r}}$ from Lemma $1, n_{1}^{(r)}$ is uniquely determined under the condition $r+1 \leqq n_{1}^{(r)} \leqq r+2$. For $k^{*}=k\left(e^{2 \pi \sqrt{-1} / p}\right)$, we have the following result.

Proposition. Let k and p be as in Lemma 1. In addition to the assumptions (1) and (2) of Lemma 1, we assume that
(3) $\lambda_{p}^{-}\left(k^{*}\right)=1$, and
(4) $D_{r}=1$ for some $r \geqq 1$.

Then, $D_{r+1} \neq 1$ is and only if $n_{1}^{(r)}=r+1$. In particular, $\mu_{p}(k)=\lambda_{p}(k)=0$ if $n_{1}^{(r)}=r+1$.

For the Proof of Proposition, we need some lemmas. Let K_{n} denote
the completion of k_{n} at \mathfrak{p}_{n}. Let $U_{n}=\left\{u \in K_{n}\right.$: unit $\left.\mid u \equiv 1\left(\bmod \mathfrak{p}_{n}\right)\right\}$ and $U_{n}^{(r)}=$ $\left\{u \in U_{n} \mid N_{n, 0}(u) \equiv 1\left(\bmod p^{n+r+1}\right)\right\}$ for $0 \leqq r \leqq n$.

Lemma 2. Under the same assumptions as in Lemma 1, $N_{n+1, n}\left(U_{n+1}\right)$ $=U_{n}^{(1)}$ for all $n \geqq 0$.

Proof. Clearly $N_{n+1, n}\left(U_{n+1}\right) \subset U_{n}^{(1)} \subset U_{n}$. The composite map of $N_{n, 0}$: $U_{n} \rightarrow 1+p^{n+1} \boldsymbol{Z}_{p}$ and $1+p^{n+1} \boldsymbol{Z}_{p} \rightarrow 1+p^{n+1} \boldsymbol{Z}_{p} / 1+p^{n+2} \boldsymbol{Z}_{p}$ is surjective and its kernel is $U_{n}^{(1)}$. Therefore $U_{n} / U_{n}^{(1)} \cong \boldsymbol{Z} / p \boldsymbol{Z}$. On the other hand, we see that $U_{n} / N_{n+1, n}\left(U_{n+1}\right) \cong G\left(K_{n+1} / K_{n}\right) \cong \boldsymbol{Z} / p \boldsymbol{Z}$ by local class field theory. Hence $N_{n+1, n}\left(U_{n+1}\right)=U_{n}^{(1)}$.

Lemma 3. Assume that A_{n} is cyclic in addition to the assumptions of Lemma 1. If $D_{n}=1$ for some $n \geqq 1$, then $A_{n+1}=B_{n+1}^{(n)}$ and its order is p^{n+1}.

Proof. We proceed by induction on n. First we have to show that $A_{1}=B_{1}$. Note that $\left|B_{1}\right|=p$ from Lemma 1. Assume that $B_{1} \varsubsetneqq A_{1}$. Then there exists $a \in A_{1}$ such that $a^{\sigma-1} \neq 1$ and $a^{(\sigma-1)^{2}}=1$. It is easy to see that there exist $u \in Z_{p}\left[G\left(k_{1} / k\right)\right]^{\times}$and $v \in Z_{p}\left[G\left(k_{1} / k\right)\right]$ such that $1+\sigma+\cdots+\sigma^{p-1}=$ $(\sigma-1)^{2} v+p u$. Since $\left|A_{0}\right|=1$, we see that $a^{p}=1$ and $a \in B_{1}$ because A_{1} is cyclic by assumption, and this is a contradiction. Next we assume that proposition holds for $n-1$. Since $D_{n}=1, N_{n, 0}\left(E_{n}\right)=E_{0}^{p^{n}}$ from Lemma 1. It follows from Lemma 2 that an element of E_{n} is a local norm from k_{n+1} at \mathfrak{p}_{n}. Since any place which does not lie above p is unramified in k_{n+1} / k_{n}, the product formula of norm residue symbol and Hasse's norm theorem imply that $E_{n} \subset N_{n+1, n}\left(k_{n+1}^{\times}\right)$. Then by the genus theory for k_{n+1} / k_{n},

$$
\left|B_{n+1}^{(n)}\right|=\left|A_{n}\right| \frac{p^{2}}{p\left(E_{n}: E_{n} \cap N_{n+1, n}\left(k_{n+1}^{\times}\right)\right)}=p^{n+1} .
$$

Now assume that $B_{n+1}^{(n)} \varsubsetneqq A_{n+1}$ and choose $a \in A_{n+1}$ such that $\alpha^{\sigma_{n-1}} \neq 1$ and $a^{\left(\sigma_{n}-1\right)^{2}}=1$. As above, by taking $u \in \boldsymbol{Z}_{p}\left[G\left(k_{n+1} / k_{n}\right)\right]^{\times}$and $v \in \boldsymbol{Z}_{p}\left[G\left(k_{n+1} / k_{n}\right)\right]$ such that $1+\sigma_{n}+\cdots+\sigma_{n}^{p-1}=\left(\sigma_{n}-1\right)^{2} v+p u$, we have $a^{p^{n+1}}=1$ because $\left|A_{n}\right|=$ p^{n}. Since A_{n} is cyclic, it follows that $a \in B_{n+1}^{(n)}$ which is a contradiction.

Proof of Proposition. Assume that $D_{r+1}=1$. Then $\mathfrak{p}_{r+1}^{\prime h}=\left(\alpha_{r+1}\right)$ for some $a_{r+1} \in k_{r+1}$. Put $\alpha_{r}=N_{r+1, r}\left(\alpha_{r+1}\right)$. Then $\mathfrak{p}_{r}^{\prime h}=\left(\alpha_{r}\right)$ and \mathfrak{p}^{r+2} divides ($\left.N_{r, 0}\left(\alpha_{r}\right)^{p-1}-1\right)$. Hence $n_{1}^{(r)}=r+2$. Conversely assume that $n_{1}^{(r)}=r+2$. Let α_{r} be an element of k_{r} such that $\mathfrak{p}_{r}^{\prime h}=\left(\alpha_{r}\right)$. It follows that there exists $\alpha_{r+1} \in$ k_{r+1} such that $\alpha_{r}^{p-1}=N_{r+1, r}\left(\alpha_{r+1}\right)$ from Lemma 2 and Hasse's norm theorem. Since $N_{r+1, r}\left(\mathfrak{p}_{r+1}^{\prime(p-1) h}\left(\alpha_{r+1}^{-1}\right)\right)=\mathfrak{p}_{r}^{\prime(p-1) h}\left(\alpha_{r}^{-1}\right)^{(p-1)}=(1), \mathfrak{p}_{r+1}^{\prime(p-1) h}\left(\alpha_{r+1}^{-1}\right)=\mathfrak{a}_{r+1}^{\sigma_{r}-1}$ for some ideal \mathfrak{a}_{r+1} of k_{r+1}. Thus $D_{r+1} \subset A_{r+1}^{\sigma_{r}-1}$. Now the assumption (3) and the reflection theorem imply that A_{n} is cyclic for all $n \geqq 1$. Hence $D_{r+1}=1$ from Lemma 3.

When $p=3$, we calculated $N_{1,0}\left(E_{1}\right)$ and gave some examples of k such that $D_{1} \neq 1$ in [2]. For those k 's with $D_{1}=1$, we calculated $n_{1}^{(1)}$ and obtained the following theorem.

Theorem. Let $p=3$ and $k=\boldsymbol{Q} \sqrt{m}$) where $m=106,253,454,505,607$, 787, 886, $994,1102,1294,1318,1333,1462,1669,1753$, or 1810 . Then these k 's satisfy all assumptions of proposition and moreover $n_{1}^{(1)}=2$. Hence $\mu_{3}(k)=\lambda_{3}(k)=0$ for the above values of m ' s .

Remark. For $m=295,397,745$, or 1738 , we have $n_{1}^{(1)}=3$ and $D_{2}=1$. But the calculation of $n_{1}^{(2)}$ is difficult since k_{2} / \boldsymbol{Q} is an extension of degree 18.

References

[1] T. Fukuda and K. Komatsu: On \boldsymbol{Z}_{p}-extensions of real quadratic fields. J. Math. Soc. Japan, 38, 95-102 (1986).
[2] T. Fukuda, K. Komatsu, and H. Wada: A remark on the λ-invariant of real quadratic fields. Proc. Japan Acad., 62A, 318-319 (1986).
[3] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).

