71. A Note on the Universal Power Series for Jacobi Sums

By Humio Ichimura
Department of Mathematics, Yokohama City University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1989)

§ 1. Introduction. This note is a supplement of our previous work [5], and we use the same notation as in [5].

Let l be a fixed odd prime number. Ihara [7] constructed for each element ρ of $\operatorname{Gal}\left(\overline{\boldsymbol{Q}} / \boldsymbol{Q}\left(\mu_{l^{\infty}}\right)\right)$ an l-adic two variable power series $F_{\rho}(u, v)$ by using a tower of Fermat curves. Some properties of $F_{\rho}(u, v)$ were studied by [7], Anderson [1], Coleman [3], Ihara-Kaneko-Yukinari [8], etc. In particular, it is proved that the power series $F_{\rho}(u, v)$ is universal for Jacobi sums and "hence" can be written as a product of three copies of a certain one variable power series. We denote by $g_{\rho}(t)$ the "twisted log" of the one variable power series, which is known to be an element of $\boldsymbol{Z}_{l}[[t]]$ (cf. [8]).

The purpose of this note is to describe the difference (if any) between the "expected" image of the homomorphism

$$
\tilde{\boldsymbol{g}}: \quad \operatorname{Gal}\left(\overline{\boldsymbol{Q}} / \boldsymbol{Q}\left(\mu_{l}\right)\right) \ni \rho \longrightarrow g_{\rho}(t) \bmod l \in \boldsymbol{F}_{l}[[t]]
$$

and its actual image by means of Iwasawa invariants of the l-cyclotomic field $\boldsymbol{Q}\left(\mu_{1 \infty}\right)$.

To be more precise, denote by $\widetilde{\mathcal{V}}^{-}$the additive group consisting of all the power series $g(t)$ in $\boldsymbol{F}_{l}[[t]]$ satisfying

$$
D^{t-1} g=g \quad \text { and } \quad g\left((1+t)^{-1}-1\right)=-g(t) .
$$

Here, $D=(1+t) d / d t$ is a differential operator on $\boldsymbol{F}_{l}[[t]]$. Then, this module $\widetilde{V^{-}}$- is the "expected" image in the following sense:

Theorem 1 ([5, Th. $\left.\left.3^{\prime}\right]\right)$. $\operatorname{Im} \tilde{\boldsymbol{g}} \subset C \widetilde{V}^{-}$, and both sides coincide if and only if the Vandiver conjecture is valid.
Let λ be Iwasawa's λ-invariant of the cyclotomic Z_{l}-extension of the real cyclotomic field $\boldsymbol{Q}(\cos (2 \pi / l))$. In $\S 2$, we define an invariant ε of a certain Galois group over $\boldsymbol{Q}\left(\mu_{l^{\infty}}\right)$, which is very similar to its ν-invariant. Our result is

Theorem 2. The cardinality of the quotient $\widetilde{\mathcal{V}}^{-} /(\operatorname{Im} \tilde{\boldsymbol{g}})$ is finite and is equal to $l^{2+\varepsilon}$.

On the other hand, Coleman [3] proved that the power series $g_{\rho}(t)$ satisfies some non obvious functional equations and that these functional equations characterize the image of the homomorphism

$$
\boldsymbol{g}: \quad \operatorname{Gal}\left(\overline{\boldsymbol{Q}} / \boldsymbol{Q}\left(\mu_{l \infty}\right)\right) \ni \rho \longrightarrow g_{\rho}(t) \in \boldsymbol{Z}_{l}[[t]]
$$

if and only if the Vandiver conjecture is valid. In [5, Th. 2], we described the difference between the "expected" image of \boldsymbol{g} and its actual image by means of Iwasawa type invariant of $\boldsymbol{Q}\left(\mu_{l^{\infty}}\right)$. Theorems 1 and 2 are modulo l version of these results.
§ 2. Definition of ε. In this section, we define the invariant ε and give a simple remark on the invariant λ mentioned in $\S 1$.

Let Ω_{\imath}^{-}be the "odd part" of the maximum pro- l abelian extension over $\boldsymbol{Q}\left(\mu_{l \infty}\right)$ unramified outside l, and put $\mathbb{B}=\operatorname{Gal}\left(\Omega_{-}^{-} / \boldsymbol{Q}\left(\mu_{l_{\infty}}\right)\right)$. We denote by Λ and Λ_{1} the completed group rings $\boldsymbol{Z}_{l}\left[\left[\boldsymbol{Z}_{l}^{\times}\right]\right]$and $\boldsymbol{Z}_{l}\left[\left[1+\left[\boldsymbol{Z}_{l}\right]\right]\right.$ respectively. We identify Λ_{1} with the power series ring $\boldsymbol{Z}_{l}[[t]]$ by $1+l \leftrightarrow 1+t$. The Galois group (5) admits a Λ-module structure and also a $Z_{l}[4]$-module structure in the usual way, here $\Delta=\operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{l}\right) / \boldsymbol{Q}\right)$. For a $\boldsymbol{Z}_{l}[\Delta]$-module M and an integer j, we denote by $M^{(j)}$ the ω^{j}-eigenspace of M, ω being the Teichmüller character of Δ. In what follows, i denotes an odd integer with $1 \leq i \leq l-2$. It is known that the free part $\mathfrak{S e}^{(i)}=\mathscr{S S}^{(i)} /\left(\operatorname{Tor}_{\Lambda_{1}}{ }^{(5)}{ }^{(i)}\right)$, $\operatorname{Tor}_{\Lambda_{1}}{ }^{(5)}{ }^{(i)}$ being the Λ_{1}-torsion part of ${ }^{(54}{ }^{(i)}$, is pseudo-isomorphic to Λ_{1}. Hence there exists an injective Λ-homomorphism $\iota: \mathscr{S}^{(i)} \rightarrow \Lambda_{1}$ with a finite cokernel. As is easily seen, the image \mathfrak{A}_{i} of ι depends only on $\mathscr{S}_{\mathfrak{C}}^{(i)}$ and not on the choice of ι. We define

$$
\varepsilon_{i}=\operatorname{Min}\left\{\operatorname{deg} g \mid \text { all distiguished polynomials } g \text { in } \mathfrak{H}_{i}\right\}, \quad \varepsilon=\sum_{i} \varepsilon_{i} .
$$

Here, we regard the constant power series $1\left(\in \Lambda_{1}\right)$ as a distinguished polynomial of degree zero. This invariant ε_{i} is a kind of Iwasawa's ν invariant of $\mathfrak{S e}^{(i)}$.

As for the invariant λ mentioned in $\S 1$, we see that it is equal to Iwasawa's λ-invariant of the torsion Λ_{1}-submodule $\operatorname{Tor}_{\Lambda_{1}}{ }^{(8)}$ of © ${ }^{5}$ by using the "Spiegelung Satz" (cf. [5, § 3.1]). Further, we denote by λ_{i} Iwasawa's λ invariant of $\operatorname{Tor}_{\Lambda_{1}}{ }^{(5)}{ }^{(i)}$. Then we have $\lambda=\sum_{i} \lambda_{i}$.
§3. Proof of Theorem 2. It is known that the homomorphisms \boldsymbol{g} and $\tilde{\boldsymbol{g}}$ factor through © (cf. [7]), and we denote the induced homomorphisms $\mathscr{G} \rightarrow \boldsymbol{Z}_{l}[[t]]$ and $\mathscr{G} \rightarrow \boldsymbol{F}_{l}[[t]]$ also by \boldsymbol{g} and $\tilde{\boldsymbol{g}}$ respectively. We put $\boldsymbol{g}^{(i)}=\left.\boldsymbol{g}\right|_{(\mathbb{g}(i)}$ and $\tilde{\boldsymbol{g}}^{(i)}=\tilde{\boldsymbol{g}}_{\left.\right|_{凶(i)}}$. Since the induced homomorphisms \boldsymbol{g} and $\tilde{\boldsymbol{g}}$ are compatible with the action of Λ (cf. [7]), we see from Theorem 1 that $\operatorname{Im} \tilde{\boldsymbol{g}}^{(i)} \subset C \widetilde{V}^{(i)}$. To prove Theorem 2, it suffices to prove the following Δ-decomposed version:

Theorem $\mathbf{2}^{\prime}$. The cardinality of the quotient $\widetilde{\bigvee}^{(i)} /\left(\operatorname{Im} \tilde{\boldsymbol{g}}^{(i)}\right)$ is finite and is equal to $l^{\lambda_{i}+\varepsilon_{i}}$.

For the convenience of readers, we state here the theorem of Coleman referred to in $\S 1$. Let $C \vartheta^{(i)}$ be the ω^{i}-eigenspace of the Λ-module

$$
Q)=\left\{g \in \boldsymbol{Z}_{t}[[t]] \mid \sum_{\zeta l=1} g(\zeta(1+t)-1)=0\right\} .
$$

Theorem C ([3]). $\operatorname{Im} \boldsymbol{g}^{(i)} \subset C V^{(i)}$, and both sides coincide if and only if the Vandiver conjecture for ($l-i$)-part is valid, i.e., the ω^{l-i}-eigenspace of the l-class group of $\mathbf{Q}(\cos (2 \pi / l))$ is trivial.

Let g_{i} be a characteristic power series of $\operatorname{Tor}_{\Lambda_{1}}{ }^{\left(S^{(i)}\right.}$. The following is essential in the proof of Theorem 2^{\prime}.

Proposition 1. $\left.\operatorname{Im} \boldsymbol{g}^{(i)} \subset g_{i} \cdot \subset\right)^{(i)}$ and $\left(g_{i} \cdot \subset V^{(i)}\right) /\left(\operatorname{Im} \boldsymbol{g}^{(i)}\right)$ is finite.
Remark. This is a quantitative version of Theorem C. An assertion a little weaker than Prop. 1 is given in [5, Prop. 3].

Proof of Prop. 1. First we deal with the case $i=1$. By Theorem C and the Stickelberger theorem (see e.g. [9, Prop. 6.16]), we see that $\operatorname{Im} \boldsymbol{g}^{(1)}=$
$C V^{(1)}$. By using the Stickelberger theorem again, we obtain $g_{1}=1$. So, Prop. 1 is valid when $i=1$. Next, assume $i \neq 1$.
Let \mathfrak{I} be the inertia group of an extension of l in $\Omega_{i} / \boldsymbol{Q}\left(\mu_{l_{\infty}}\right)$, and let f_{i} be a characteristic power series of the torsion Λ_{1}-module $\mathscr{S S}^{(i)} / \mathfrak{T}^{(i)}$. In [5, Prop. 5(1)], we have given a relation between the homomorphism $\boldsymbol{g}^{(i)}$ from $\mathscr{S H}^{(i)}$ to $C V^{(i)}$ and the Coleman's isomorphism $\lambda \circ[\mathrm{Col}]$ from $\mathscr{T}^{(i)}$ onto $C V^{(i)}$ as follows. For the definition of $\lambda \circ[\mathrm{Col}]$, see [2] or [5, §3].

$$
f_{i} \cdot \mathscr{S}^{(i)} \subset \mathfrak{I}^{(i)} \text { and for } \rho \in \mathscr{S S}^{(i)}, \boldsymbol{g}^{(i)}(\rho)=\lambda \circ[\mathrm{Col}]\left(f_{i} \cdot \rho\right) \text {. }
$$

 $\operatorname{Ker} \boldsymbol{g}^{(i)}=\operatorname{Tor}_{\Lambda_{1}} \mathscr{S 5}^{(i)}$ (cf. [5, §3.1]), $\boldsymbol{g}^{(i)}$ induces an injective homomorphism from $\mathfrak{S}^{(i)}$ to $C V^{(i)}$, which we denote by $\overline{\boldsymbol{g}}^{(i)}$. Let $\overline{\mathfrak{T}}^{(i)}$ be the subgroup of $\mathfrak{S}^{(i)}$ defined by $\overline{\mathfrak{T}}^{(i)}=\mathfrak{T}^{(i)}$ modulo $\mathrm{Tor}_{\Lambda_{1}} \mathscr{S S}^{(i)}$, which is canonically isomorphic to $\mathfrak{T}^{(i)}$ (cf. [6, Prop. 2]). Hence, $\lambda 0[\mathrm{Col}]$ induces an isomorphism from $\overline{\mathfrak{T}}^{(i)}$ onto $C V^{(i)}$, which we denote by $\overline{\lambda \cdot[\mathrm{Col]}]}$. From [5, Prop. 5(1)] recalled above, it follows that

$$
f_{i} \cdot \mathscr{S g}^{(i)} \subset \overline{\mathfrak{T}}^{(i)} \text { and for } \rho \in \mathscr{S g}^{(i)}, \overline{\boldsymbol{g}}^{(i)}(\rho)=\overline{\lambda \circ[\mathrm{Col}]}\left(f_{i} \cdot \rho\right) .
$$

As is easily seen from [6, Prop. 2], the power series f_{i} is divisible by g_{i} and f_{i} / g_{i} is a characteristic power series of the torsion Λ_{1}-module $\mathscr{S}^{(i)} / \overline{\mathfrak{T}}^{(i)}$. Let ι be (as in § 2) an embedding of $\mathfrak{S}_{2}{ }^{(i)}$ into Λ_{1} with a finite cokernel. Since $\mathfrak{T}^{(i)}$ is isomorphic to Λ_{1} (see e.g. [2]), we see that $\iota\left(\overline{\mathbb{T}}^{(i)}\right)=\left(f_{i} / g_{i}\right) \cdot \Lambda_{1}$. Hence, $f_{i} \cdot \mathscr{S}_{\mathrm{C}}^{(i)} \subset g_{i} \cdot \overline{\mathfrak{T}}^{(i)}$ and $\left(g_{i} \cdot \overline{\mathfrak{T}}^{(i)}\right) /\left(f_{i} \cdot \mathscr{S}^{(i)}\right)$ is finite. Now, the assertion of Prop. 1 for $i \neq 1$ follows from the above relation between $\overline{\boldsymbol{g}}^{(i)}$ and $\overline{\lambda \circ[\mathrm{Col}]}$.

Proof of Theorem 2'. Recall that $C V^{(i)} \bmod l=C \widetilde{V}^{(i)}(c f .[5])$. Hence, by Prop. 1, we get $\operatorname{Im} \tilde{\boldsymbol{g}}^{(i)} \subset g_{i} \cdot \widetilde{V}^{(i)}$ and $\left(g_{i} \cdot \subset \widetilde{V}^{(i)}\right) /\left(\operatorname{Im} \tilde{\boldsymbol{g}}^{(i)}\right)$ is finite. Since Iwasawa's μ-invariant of $\mathrm{Tor}_{4_{1}}{ }^{(5)}{ }^{(i)}$ is zero (cf. Ferrero-Washington [4]), we may assume that g_{i} is a distinguished polynomial of degree λ_{i}. Therefore, since $C V^{(i)}$ is isomorphic to $\Lambda_{1}=\boldsymbol{Z}_{l}[[t]]$ (cf. [2]), the quotient $\widetilde{V}^{(i)} / g_{i} \cdot \widetilde{V}^{(i)}$ is finite and its cardinality is $l^{\lambda_{i}}$. Since $C V^{(i)} \simeq \Lambda_{1}$, we may identify $g_{i} \cdot C V^{(i)}$ with Λ_{1}. Then, by Prop. 1, the homomorphism $\overline{\boldsymbol{g}}^{(i)}$ gives an injective homomorphism from $\mathfrak{S}^{(i)}$ to Λ_{1} with a finite cokernel. Therefore, by the very definition of ε_{i} and that $\mu=0$, we see that the cardinality of the quotient $\left(g_{i} \cdot \widetilde{\square}^{(i)}\right) /\left(\operatorname{Im} \tilde{\boldsymbol{g}}^{(i)}\right)$ is $l^{\varepsilon_{i}}$. This completes the proof.
§4. The Galois group $\mathbb{C B}_{6}$ and the Vandiver conjecture. In this section, we give an alternative proof of the following well known fact by using the homomorphism $\boldsymbol{g}^{(i)}$.

Proposition 2. The following conditions are equivalent:
(i) The Vandiver conjecture for ($l-i$)-part is valid.
(ii) $\operatorname{Gs~}^{(i)}$ is torsion free and cyclic over Λ_{1}
(iii) $\mathscr{S}^{(i)}$ is cyclic over Λ_{1}.
(i) \Rightarrow (ii): Under the Vandiver conjecture for $(l-i)$-part, $\left.\operatorname{Im} \boldsymbol{g}^{(i)}=C\right\rangle^{(i)}$ by Theorem C, and $\boldsymbol{g}^{(i)}$ is injective by [6, §3.2 Corollary]. Hence, $\mathscr{S H}^{(i)} \simeq$ $\subset V^{(i)}$. Therefore, since $C V^{(i)}$ is free and cyclic over Λ_{1}, so is ${ }^{(5)}{ }^{(i)}$.
(ii) \Rightarrow (i): Since $\operatorname{Ker} \boldsymbol{g}^{(i)}=\operatorname{Tor}_{\Lambda_{1}}{ }^{(5)}{ }^{(i)}$ (cf. [5, §3.1]), we see from the
assumption that $\boldsymbol{g}^{(i)}$ is injective and $g_{i}=1$. So, by Prop. 1, $C V^{(i)} /\left(\operatorname{Im} \boldsymbol{g}^{(i)}\right)$ is finite. Since $\mathscr{G S}^{(i)}$ is cyclic, $\operatorname{Im} \boldsymbol{g}^{(i)}=\alpha \cdot C V^{(i)}$ for some $\alpha \in \Lambda_{1}$. By the finiteness of $C V^{(i)} /\left(\operatorname{Im} \boldsymbol{g}^{(i)}\right)$, we see that α is a unit of Λ_{1}. Therefore, $C V^{(i)}=$ $\operatorname{Im} \boldsymbol{g}^{(i)}$. Hence, by Theorem C, the Vandiver conjecture for ($l-i$)-part is valid.
(ii) \Rightarrow (iii): Obvious.
(iii) \Rightarrow (ii): Assume that $\operatorname{(5s}^{(i)}$ is cyclic over Λ_{1}. Then, since the free part $\mathfrak{S C}^{(i)}$ of $\mathscr{S G}^{(i)}$ is pseudo-isomorphic to Λ_{1}, $\mathscr{J s}^{(i)}$ must be isomorphic to Λ_{1}.

References

[1] G. W. Anderson: The hyperadelic gamma function. Inv. Math., 95, 63-131 (1989).
[2] R. Coleman: Local units modulo circular units. Proc. AMS., 89, 1-7 (1983).
[3] --: Anderson-Ihara theory, Gauss sums and circular units. Adv. St. in Pure Math., 17, 55-72 (1989).
[4] B. Ferrero and L. C. Washington: The Iwasawa invariant μ_{p} vanishes for abelian number fields. Ann. of Math., 109, 377-395 (1979).
[5] H. Ichimura and M. Kaneko: On the universal power series for Jacobi sums and the Vandiver conjecture. J. Number Theory, 31, 312-334 (1989).
[6] H. Ichimura and K. Sakaguchi: The non-vanishing of a certain Kummer character χ_{m} (after Soulé), and some related topics. Adv. St. in Pure Math., 12, 53-64 (1987).
[7] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-106 (1986).
[8] Y. Ihara, M. Kaneko, and A. Yukinari: On some properties of the universal power series for Jacobi sums. Adv. St. in Pure Math., 12, 65-86 (1987).
[9] L. C. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York (1982).

