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1. Introduction. This note is a supplement of our previous work
[5], and we use the same notation as in [5].

Let be a fixed odd prime number. Ihara [7] constructed for each ele-
ment p of Gal (/Q(g)) an/-adic two variable power series F(u, v) by using
a tower of Fermat curves. Some properties of F,(u, v) were studied by [7],
Anderson [1], Coleman [3], Ihara-Kaneko-Yukinari [8], etc. In particular,
it is proved that the power series F,(u, v) is universal for Jacobi sums and
"hence" can be written as a product of three copies of a certain one variable
power series. We denote by g,(t) the "twisted log" of the one variable
power series, which is known to be an element of Z[[t]] (cf. [8]).

The purpose of this note is to describe the difference (if any) between
the "expected" image of the homomorphism

" Gal (Q/Q(g)) p--g(t) mod e F[[t]]
and its actual image by means of Iwasawa invariants of the /-cyclotomic
field Q(/).

To be more precise, denote by c(?- the additive group consisting of all
the power series g(t) in F[[t]] satisfying

D-lg g and g((1+ t) -1-1)-- g(t).
Here, D--(l+t)d/dt is a differential operator on F[[t]]. Then, this module
c(?- is the "expected" image in the following sense"

Theorem 1 ([5, Th. 3’]). ImcC{/-, and both sides coincide if and
only if the Vandiver conjecture is valid.
Let 2 be Iwasawa’s 2-invariant of the cyclotomic Z-extension of the real
cyclotomic field Q(cos (2u/l)). In 2, we define an invariant of a certain
Galois group over Q(/), which is very similar to its v-invariant. Our re-
sult is

Theorem 2. The cardinality of the quotient - (Im ti) is finite and
is equal to +.

On the other hand, Coleman [3] proved that the power series g,(t) satis-
fies some non obvious functional equations and that these functional equa-
tions characterize the image of the homomorphism

g" Gal (/Q()) p--g(t) e z[[t]]
i and only i the Vandiver conjecture is valid. In [5, Th. 2], we described
the difference between the "expected" image o g and its actual image by
means of Iwasaw type invariant of Q(t,). Theorems 1 and 2 are modulo
version of these results.
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2. Definition of . In this section, we define the invariant and
give a simple remark on the invariant 2 mentioned in 1.

Let Y2F be the "odd part" of the maximum pro-/ abelian extension over

Q(/) unramified outside l, and put (R)--Gal (I;/Q([)). We denote by
d and d the completed group rings Z[[Z]] and Z[[I+IZ]] respectively.
We identify dl wit’h the power series ring Z[[t]] by 1 +/-1+ t. The Galois
group (R) admits a d-module structure and also a Z[d]-module structure in
the usual way, here d=Gal (Q(It)/Q). For a Z[d]-module M and an integer

], we denote by M;) the w-eigenspace of M, w being the Teichmtiller charac-
ter of zl. In what follows, i denotes an odd integer with 1 <i<l--2. It is
known that the free part *) --(R) / (Tor (R))), Tor (R)* being the d-torsion
part of (, is pseudo-isomorphic to d. Hence there exists an injective
d-homomorphism " (*)-d with a finite cokernel. As is easily seen, the
image , of depends only on ) and not on the choice of . We define

Min (deg g lall distiguished polynomials g in }, .
Here, we regard the constant power series I (e A) as a distinguished
polynomial of degree zero. This invariant is a kind of Iwasawa’s
invariant of

As for the invariant mentioned in 1, we see that it is eclual t.o Iwa-
sawa’s 2-invariant of the torsion A-submodule Tor (R) of (R) by using the
"Spiegelung Satz" (cf. [5, 3.1]). Further, we denote by 2, Iwasawa’s
invariant of Tor (R)(*). Then we have 2 , 2,.

3. Proof of Theorem 2. It is known that the homomorphisms g
and ti factor through (R) (cf. [7]), and we denote the induced homomorphisms
(R)-Z[[t]] and (R)--F[[t]] also by g and respectively. We put g(*)
and (*)=gil,,,. Since the induced homomorphisms g and t are compatible
with the action of A (cf. [7]), we see from Theorem 1 that Im ti(*)
To prove Theorem 2, it suffices to prove the following l-decomposed version"

Theorem 2’. The cardinality of the quotient c(*)/(Im()) is finite
and is equal to/’/**.

For the convenience of readers, we state here the theorem of Coleman
referred to in 1. Let c(;(*) be the **-eigenspace of the A-module

c={g e z,[[t]] E g((1+ t)- 1)=0}.
/=1

Theorem C ([3]) Img ci;(), and both sides coincide if and only if
the Vandiver conjecture for (l--i)-part is valid, i.e., the o--eigenspace of
the l-class group of Q(cos (2//)) is trivial.

Let g, be a characteristic power series of Tora (R)(*). The following is
essential in the proof of Theorem 2’.

Proposition 1. Img()g.C(?() and (g.CU())/(Img()) is finite.
Remark. This is a quantitative version o Theorem C. An assertion

a little weaker than Prop. 1 is given in [5, Prop. 3].
Proof of Prop. 1. First we deal with the case i--1. By Theorem C

and the Stickelberger theorem (see e.g. [9, Prop. 6.16]), we see that Im
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(1). By using the Stickelberger theorem again, we obtain g1=1. So,
Prop. 1 is valid when i=1. Next, assume i:/:1.
Let % be the inertia group of an extension of in 9/Q(t), and let f
be a characteristic power series o the trsion Al-mOdule (()/(). In [5,
Prop. 5(1)], we have given a relation between the homomorphism g() from
(R)() to c-,) and the Coleman’s isomorphism [Col] rom %() onto () as
2ollows. For the definition o 2 [Col], see [2] or [5, 3].

f.(R)()%() and for pe (R)(), g(i)(p)=o [Col](f.p).
As before, () denotes the free part (R)()/(Torz(R) ()) of (R)(). Since
Ker g()= Torz (R)() (cf. [5, 3.1]), g() induces an injective homomorphism

from () to c((), which we denote by (). Let () be the subgroup of
defined by ()= %() modulo Torz, (R)(), which is canonically isomorphic to
() (cf. [6, Prop. 2]). Hence, [Col] induces an isomorphism from
onto c(;(), which we denote by [Col]. From [5, Prop. 5(1)] recalled above,
it follows that

f. (i) () and for p e (), ()(p)= [Col](f. p).
As is easily seen from [6, Prop. 2], the power series f, is divisible by g
and f/g is a characteristic power series of the t.orsion A-module ()/
Let be (as in 2) an embedding of @() into A1 with a finite cokernel. Since
() is isomorphic to A (see e.g. [2]), we see that (%())=(f/g). A. Hence,
f,.()cg.() and (g.%())/(f.(*)) is finite. Now, the assertion of Prop.
I for i:/: 1 follows from the above relation between () and 2 [(ol].

Proof of Theorem 2’. Recall that c(?()mo.d/=() (cf. [5]). Hence, by
Prop. 1, we get Im t() c g. c(?() and (g. c{?())/(Im ()) is finite. Since

Iwasawa’s/-invariant of Torzi ((t) is zero (Cf. Ferrero-Washington [4]), we
may assume that g is a distinguished polynomial of degree . Therefore,
since c;() is isomorphic to A =Z[[t]] (cf. [2]), the quotient c(?()/g, ci;() is
finite and its cardinality is . Since c(?()A, we may identify
with A. Then, by Prop. 1, the homomorphism () gives an injective
homomorphism from @() to A with a finite cokernel. Therefore, by the
very definition of and that/=0, we see that the cardinality of the quotient
(g:. ?()) (Im()) is . This completes the proof.

4o The Galois group ( and the Vandiver conjecture. In this sec-
tion, we give an alternative proof of the following well known act by using
the homomorphism

Proposition 2. The following conditions are equivalent"
( ) The Vandiver conjecture for (l--i)-part is valid.
(ii) (R)( is torsion free and cyclic over A
(iii) (R)() is cyclic over A.
(i)(ii)" Under the Vandiver conjecture for (l-/)-part, Im g()

by Theorem C, and g() is injective by [6, 3.2 Corollary]. Hence,
c(?(). Therefore, since c(?() is ree and cyclic over A, so is

(ii)(i)" Since Ker g()=Tor (R)() (c. [5, 3.1]), we see rom the



No. 7] Jacobi Sums 259

assumption that g(i) is injective and gi=l. So, by Prop. 1, c(?(/(Img()
is finite. Since (R)( is cyclic, Im g()=a, c(?() for some a e A. By the finite-
ness of ()/(Img()), we see that is a unit of A,. Therefore, c()=
Img(). Hence, by Theorem C, the Vandiver conjecture for (/-/)-part is
valid.

(ii)(iii): Obvious.
(iii)}(ii): Assume that (R)) is cyclic over A. Then, since the free

part ( of (R)() is pseudo-isomorphic t A, (R)() must be isomorphic to /.
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