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1. Introduction. This is a research announcement concerning founda-
tions of conformally flat manifolds. We assume throughout that M be a
closed oriented smooth n-dimensional manifold and any map or transforma-
tion which appears in the sequal is orientation preserving.

A Riemannian manifold (M, g) is called conformally fiat i or any x e M,
there exist a neighbourhood U of x and a smooth embedding " U--+S such
that *gz=p. g, where gz is the spherical metric of S and / is a positive
valued continuous function on U.

Recall Liouville’s theorem" any (locally defined) conformal map of S
is the restriction of a Moebius transformation, provided n._ 3. Thus the
above is unique up to the composition with a Moebius transformation, if
n_ 3. This quickly yields a system of local charts of M modelled on S
with transition unctions Moebius transformations. Further, by means of
analytic continuation, we get a developing map D" M--S and a holonomy
homomorphism h" Zl(M)--Mob+(Sn), where M is the universa.1 covering of
M and Mob/(Sn) is the group of all the orientation preserving Moebius
transformations of S. They satisfy D(yx)--h()D(x), where e zl(M) and
x e M. The image of h is called the holonomy group and denoted by F.

In dimension 2, by a conformally flat structure we mean the structure
given by the pair of a developing map and a holonomy homomorphism, i.e.
the geometric structure known as projective structure.

Examples o conformally flat structures are usually constructed as fol-
lows. Let IMob+(Sn) be a discrete subgroup which acts freely and prop-
erly discontinuously on a F-invariant domain U o S. Then M=U/F
carries nturally a conformally flat structure. However examples are
known of conformally flat manifolds whose developing maps are not cover-
ing maps. ([3], [6], [7], [9])

In 2, given a conformally flat manifold M, we define its limit set, a
subset o S, and give criterions or the developing map to be a covering
map. In 3, we describe conditions or M to have a finite limit set. 4 is
devoted to the study of the case where the limit set is a Cantor set.

Details including ull proofs will appear elsewhere.
2. Limit set. We define the limit set of M in four different ways and

show that they 11 coincide. Recall that Moebius transformations on S are
extended in a canonical way to transformgtions on Dn+l and that they pre-



232 S. MATSUMOTO [Vol. 65 (A),

serve the Poincar metric on IntDn+. If they are not the identity, Moebius
transformations are classified into three cases.

1. Elliptic transformations, which have fixed points in IntD /.

2. Parabolic transformations, which have no fixed points in IntDn/

and exactly one fixed point in S.
3. Loxodromic transformations having no fixed points in IntDn/l and

exactly two fixed points in S".
Now we shall give definitions of the limit set.
Definition. (1) L is the closure o the set of fixed points o loxodromic

or parabolic elements of the holonomy group F.
(2) L is the set of accumulation points in S of the F-orbit of some

point a in IntD /’.

(3) L is the set of points x such that or any neighbourhood U of x in
Sn, the family {l}er is not equicontinuous.

(4) Lo is the set of points x such that or any compact neighbourhood
U of x, D-(U) has a noncompact component.

The difference o the Euclidean metric on D/ and the Poincar metric
on IntD / shows that L is independent of the particular choice of a. Since
D is a submersion, Lo is equal to the set of points not evenly covered by D.

Theorem 1. L L--L Lo.
That LoCLz is already known by Kulkarni and Pinkall ([8]). Here-

ater we shall simply denote the set in Theorem 1 by L and call it the limit
set. Clearly L is closed and F-invariant. By a standard argument for L,
we get the ollowing proposition.

Proposition 2. Let zl be a F-invariant closed subset of S which is
not a singleton. Then LcI.

As an application, we have"

Corollar :t. If D is not sur]ective, then D is a covering map onto its
image.

Corollary 3 is originally due to Kamishima ([5]). Our proof here is a
direct application of Theorem I and Proposition 2 and is elementary. Notice
however the case where S--Image(D) is a singleton reduces to Fried’s
theorem ([2]).

Another criterion in terms of the topology of the limit set is in order.

Corollar 4. Suppose (1) and (2) below.
(1) S--L is connected and simply connected.
(2) Any point of L has an arbitrarily small neighbourhood V such that

V-- L is connected.
Then the developing map is a covering map onto its image.
There exist examples in dimension two showing that the condition (2)

is in fact neccessary.
:. Elementary conformaly flat manifolds. It is easy to show that if

the cardinality of the limit set L is greater than 2, then L is a perfect set.
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We call M elementary in case L is a finite set. They are classified accord-
ing to the cardinality of the limit set, provided n3.

(1) I L is empty, then M is a spherical space form, that is, M--Sn/F,
where F is a finite subgroup of SO(n+ 1).

(2) If L is a singleton, then M is an Euclidean space form, that is,
M=R/F, where F is a discrete group of Euclidean motions of R. In this
case M is known to have an n-torus as a finite covering.

(3) I L consists o two points, then M is a Hopt manifold, that is,
M=(R--{O})/F, where F is a discrete group of Eucledean similarities
which keep 0 fixed. Then M has Sn-S as a finite covering

Theorem 5. Suppose that F is contained in the isotropy subgroup of
some point of Sn. Then M is elementary.

This theorem is a slight amelioration o a theorem of Fried ([2]), which
originally postulates that the image of the developing map misses the point
in Theorem 5.

Using Theorem 5, it is not difficult to show the following fact.
Theorem 6. If I does not contain nonabelian free subgroup, then M

is elementary.
Theorem 6 is first proved by Kamishima ([5]) using a result of Goldman

([4]), under the condition that F is virtually solvable. However the virtu-
ally solvability is known to be equivalent to the hypothesis of Theorem 6
in the case of groups o matrices. Our proof of Theorem 6 is more
straightfoward and elementary.

4. Cantor limit set. When two manifolds M and M carry condor-
mally flat structures, there is a canonical way to define a conformally flat
structure on M M, although it is not unique. We call this new structure
the connected sum of the two structures.

I M is obtained by the connected sum of finitely many elementary con-
ormally flat manifolds and is not itsel elementary, then M is called a C-
structure. Then the limit set is clearly a Cantor set.

Recall that a Cantor set L in S is called tame, i h(L)S or some
homeomorphism h o S. Otherwise it is called wild. The limit set of a
C-structure is easily shown to be tame. Conversely in dimension 3 we
have"

Theorem 7. Let n=3. If the limit set is a tame Cantor set, then M
is a C-structure.

Theorem 8. Let n=3. There exists a conformally fiat manifold whose
limit set is a wild Cantor set.

An example of a wild Cantor limit set is first obtained by Bestvina-
Cooper ([1]) or an open manifold and they asked about closed manifolds.
Theorem 8 answers their question.
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