63. On the Unitarizability of Principal Series Representations of p-adic Chevalley Groups

By Hiroyuki Yoshida Department of Mathematics, Kyoto University

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1989)

- 1. In this note, we shall determine the unitarizability of unramified principal series representations of p-adic Chevalley groups of classical types. Detailed proofs of all the results stated here are given in [7].
- 2. Let k be a non-archimedean local field, $\mathfrak D$ be the maximal compact subring and $\mathfrak w$ be a prime element of k. Set $q=|\mathfrak D/\mathfrak w\mathfrak D|$. The following theorem is our main tool in this research.

Theorem 1. Let N be the group of k-rational points of a unipotent algebraic group defined over k. Let T be a distribution of positive type on N. Then, for any $\alpha \in C_c^{\infty}(N)$, the convolution $T * \alpha$ is a bounded function on N.

3. Let G be a universal Chevalley group defined over k in the sense of Steinberg [6]. Let T be a maximal k-split torus and B be a Borel subgroup defined over k which contains T. Let N be the unipotent radical of B. Let G, T, B and N stand for the groups of k-rational points of G, T, B and N respectively. Let Σ be the root system and $\Delta = \{\alpha_1, \alpha_2, \cdots, \alpha_\ell\}$ be the set of simple roots determined by (G, B, T), where ℓ is the rank of G. Let Σ^+ be the set of positive roots and W be the Weyl group. For $w \in W$, set $\Psi_w^+ = \{\alpha \in \Sigma^+ \mid w\alpha < 0\}$. We have B = TN = NT and T (resp. N) is generated by $h_{\alpha}(t)$ (resp. $x_{\alpha}(t)$) for $\alpha \in \Sigma^+$, $t \in k^\times$ (resp. $t \in k$) in the notation of [6]. If $\alpha \in \Sigma$, let $\check{\alpha} \in \mathrm{Hom}(G_m, T)$ be the co-root of α and set $a_{\alpha} = \check{\alpha}(\varpi) = h_{\alpha}(\varpi) \in T$. For α , $\beta \in \Sigma$, we set $\{\alpha, \beta\} = \langle \alpha, \check{\beta} \rangle_1$ with the canonical pairing $\langle \cdot, \cdot \rangle_1$ of a root with a co-root. Let δ_B denote the modular function of B. For a quasicharacter χ of T, let $PS(\chi)$ denote the space of all locally constant functions φ on G which satisfy

 $\varphi(tng) = \delta_B(t)^{1/2} \chi(t) \varphi(g)$ for any $t \in T$, $n \in N$, $g \in G$.

Let $\pi(\mathbf{X})$ denote the admissible representation of G realized on $PS(\mathbf{X})$ by right translations.

Let K be the subgroup of G generated by $x_{\alpha}(t)$, $\alpha \in \Sigma$, $t \in \mathbb{D}$. Then K is a maximal compact subgroup of G and we have the Iwasawa decomposition G=BK. We call χ unramified if χ is trivial on $T \cap K$, the group generated by $h_{\alpha}(t)$, $\alpha \in \Sigma^+$, $t \in \mathbb{D}^\times$. Let X be the group of all unramified quasi-characters of T. The map $\chi \to (\chi(a_{\alpha_1}), \chi(a_{\alpha_2}), \cdots, \chi(a_{\alpha_\ell}))$ defines an isomorphism $X \cong (C^\times)^\ell$ and we consider X as a complex Lie group. We call χ regular if $w\chi \neq \chi$ for any $w \in W$, $w \neq 1$. Let X^r (resp. X^i) denote the set of all $\chi \in X$ which are regular (resp. regular and $\pi(\chi)$ is irreducible). Let

 $w \in W$. We set $X_w = \{ \mathfrak{X} \in X \mid w\mathfrak{X} = \overline{\mathfrak{X}}^{-1} \}$, $X_w^r = X_w \cap X^r$, $X_w^i = X_w \cap X^i$. Taking $x_w \in K$ which represents w, we define an intertwining operator T_w from $PS(\mathfrak{X})$ to $PS(w\mathfrak{X})$ by

$$(T_w(\varphi))(g)\!=\!\int_{wNw^{-1}\cap N\setminus N}\! \varphi(x_w^{-1}ng)dn,\quad \varphi\in PS(\mathbf{X}),\quad g\in G,$$

with the invariant measure dn suitably normalized. This integral is absolutely convergent if $|\chi(a_{\alpha})| < 1$ for any $\alpha \in \Psi_w^+$ and can be meromorphically continued to the whole X; T_w is holomorphic at χ if $\chi(a_{\alpha}) \neq 1$ for any $\alpha \in \Psi_w^+$. In particular, T_w is holomorphic on X^r .

4. We assume $\chi \in X^i$ until the end of 5. If $\pi(\chi)$ is hermitian, there exists a unique $w \in W$ such that $\chi \in X^i_w$, $w^2 = 1$. Then $\pi(\chi)$ is unitarizable if and only if the Hermitian form

$$(1) \hspace{1cm} (\varphi_{\scriptscriptstyle 1},\varphi_{\scriptscriptstyle 2})\!=\!c\int_{\scriptscriptstyle R\backslash G}(T_{\scriptscriptstyle w}(\varphi_{\scriptscriptstyle 1}))(g)\overline{\varphi_{\scriptscriptstyle 2}(g)}dg, \hspace{0.5cm} \varphi_{\scriptscriptstyle 1},\varphi_{\scriptscriptstyle 2}\!\in\!PS({\tt X})$$

is positive definite with $c=\pm 1$. Let w_0 be the longest element of W and ω_0 be an element of K which represents w_0 . Since Bw_0N is the big cell, we see easily that for every $\Phi \in C_c^{\infty}(N)$, the exists a unique $\varphi \in PS(\mathfrak{X})$ such that $\Phi(n) = \varphi(\omega_0 n)$, $n \in N$. We put $\varphi = \iota_{\mathfrak{X}}(\Phi)$. Then

$$(2) T_{\chi}(\Phi) = T_{\psi}(\iota_{\chi}(\Phi))(\omega_{0}), \Phi \in C_{c}^{\infty}(N)$$

defines a distribution on N. By (1), we have

$$(\varphi_1, \varphi_2) = c \int_N (T_w(\varphi_1))(\omega_0 n) \overline{\varphi_2(\omega_0 n)} dn, \qquad \varphi_1, \varphi_2 \in PS(X),$$

and this formula shows that cT_x is of positive type if $\pi(X)$ is unitarizable.

For a subset J of Δ , let W_J denote the group generated by the reflexions obtained from J and let w_J be the longest element of W_J . It is known (cf. [2], p. 225) that any element of order 2 of W is conjugate to w_J for some $J \subseteq \Delta$. Since $\pi(w_1 \chi) \cong \pi(\chi)$ for any $w_1 \in W$, we may assume $\chi \in X_{w_J}^i$ for some $J \subseteq \Delta$ without losing any generality. Let Σ_J be the root system generated by J and set

$$\Sigma_J^+ = \Sigma_J \cap \Sigma^+, \quad n_J(\alpha) = \sum_{\beta \in \Sigma_J^+} \langle \beta, \alpha \rangle \quad \text{for } \alpha \in \Sigma_J.$$

By Theorem 1, we see that $T_{\chi}*f$ is bounded on N for any $f \in C_c^{\infty}(N)$ if $\pi(\chi)$ is unitarizable. We choose f as the characteristic function of U_1^+ , the subgroup of $N \cap K$ generated by $x_{\alpha}(t)$, $\alpha \in \Sigma^+$, $t \in w\mathfrak{D}$. Then we obtain

Theorem 2. Let $\chi \in X_{w_J}^i$ and assume that $\pi(\chi)$ is unitarizable. Then we have

$$q^{-n_J(\alpha)/2} < |\chi(\alpha_\alpha)| < q^{n_J(\alpha)/2}$$
 for any $\alpha \in \Sigma_J^+$.

Corollary 3. If w_J acts as the multiplication by -1 on J, then we have (3) $q^{-1} < |\chi(a_\alpha)| < q \quad \text{for any } \alpha \in \Sigma_J.$

If $\chi \in X^r$, then $\pi(\chi)$ has the unique irreducible quotient (cf. [1], p. 304), which we denote by π_{χ} . In the similar way as above, we obtain

Proposition 4. If $\chi \in X_{w_J}^r$ and π_{χ} is unitarizable, then we have $q^{-n_J(\alpha)/2} \leq |\chi(\alpha_{\alpha})|$ for any $\alpha \in \Sigma_J^+$.

5. We combine Corollary 3 with certain deformation arguments on representations.

Proposition 5. Let w, w_1 , $w_2 \in W$ be elements of order 2 such that $w = w_1w_2$, $l(w) = l(w_1) + l(w_2)$, where l denotes the length. Let $p: [0,1] \rightarrow X_w$ and $p_1: [0,1] \rightarrow X_{w_1}$ be continuous maps. Put $\chi_t = p(t)$, $\chi_t^1 = p_1(t)$ for $0 \le t \le 1$. We assume the following conditions.

- (i) $\chi_0 = \chi_0^1$.
- (ii) $p(0,1]\subseteq X_w^i$ and $p_1(0,1]\subseteq X_w^i$.
- (iii) For any $\alpha \in \Psi_{w_1}^+$, $\chi_0(\alpha_\alpha) \neq 1$, q.
- (iv) For any $\alpha \in \Psi_{w_2}^+$, $\chi_0(\alpha_\alpha) = 1$.

Then $\pi(\chi_{t_0}^1)$ (resp. $\pi(\chi_{t_0})$) is unitarizable for some $t_0 \in (0, 1]$ if and only if $\pi(\chi_t)$ (resp. $\pi(\chi_t^1)$) is unitarizable for $0 < t \le 1$.

We consider the cases of types B, C and D separately (we omit the discussion for type A). We realize Σ as in "Planches" of Bourbaki [2]. Without losing any generality, we may normalize J in the following forms. If Σ is of type B_{ℓ} or C_{ℓ} , $J = \{\alpha_1, \alpha_3, \dots, \alpha_{2m-1}, \alpha_n, \alpha_{n+1}, \dots, \alpha_{\ell-1}, \alpha_{\ell}\}$, 2m < n. We put $n = \ell + 1$ if $\alpha_{\ell} \notin J$. If Σ is of type D_{ℓ} , $J = \{\alpha_1, \alpha_3, \dots, \alpha_{2m-1}\} \cup J_1$, where $J_1 = \{\alpha_n, \alpha_{n+1}, \dots, \alpha_{\ell-1}, \alpha_{\ell}\}$, 2m < n, $|J_1| \ge 4$ and even, or $J_1 = \emptyset$, $2m \le \ell - 1$ or $J_1 \subseteq \{\alpha_{\ell-1}, \alpha_{\ell}\}$, $2m < \ell - 1$.

Under these normalizations, w_J acts as -1 on J. Hence (3) is a necessary condition for the unitarizability.

Theorem 6. Assume G is of type Y_i and let $\chi \in X_{w_J}^i$, where Y=B, C or D. Then $\pi(\chi)$ is unitarizable if and only if the conditions (3) and (Y) are satisfied. Here

- (B) $\chi(\alpha_{\alpha_{\ell}}) > 0$ if $\alpha_{\ell} \in J$, $\chi(\alpha_{\alpha_{2m-1}}) > 0$ if $\alpha_{\ell} \notin J$.
- (C) The number of indices i such that $\chi(a_{2s,i}) < 0$, $n \le i \le \ell$, is even.
- (D) $\chi(a_{\alpha}) > 0$ for any $\alpha \in J_1$.

We can prove this theorem by induction on |J| applying Proposition 5 and its variants.

6. Let $\chi \in X$. Then $\pi(\chi)$ is of finite length and has a unique spherical constituent π_{χ}^1 (cf. [3]). Let P be the set of all $\chi \in X$ such that π_{χ}^1 is unitarizable. Then P is a compact subset of X which is stable under W.

Theorem 7. Assume G is of classical type and let $X \in X$. If $\pi(X)$ is irreducible and unitarizable, then X belongs to the closure of $P \cap X^i$.

Since we have determined $P \cap X^i$ explicitly by Theorem 6, this completes the determination of unitarizability of $\pi(X)$, $X \in X$, when $\pi(X)$ is irreducible.

References

- [1] A. Borel and N. Wallach: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press (1980).
- [2] N. Bourbaki: Groupes et algèbres de Lie. chap. IV, V, VI. Hermann, Paris (1968).
- [3] P. Cartier: Representations of p-adic groups. Proc. Symposia in Pure Math., 33, part 1, pp. 111-155 (1979).
- [4] W. Casselman: The unramified principal series of p-adic groups I. The spherical function. Compositio Math., 40, 387-406 (1980).

- [5] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups (preprint).
- [6] R. Steinberg: Lectures on Chevalley groups. Yale University Lecture notes (1967).
- [7] H. Yoshida: On the unitarizability of principal series representations of p-adic Chevalley groups (preprint).