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On the Unitarizability of Principal Series Representations
of p.adic Chevalley Groups
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Department of Mathematics, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1989)

1. In this note, we shall determine the unitarizability of unramified
principal series representations of p-adic Chevalley groups of classical types.
Detailed proofs of all the results stated here are given in [7].

2. Let k be a non-archimedean local field, be the maximal compact
subring and be a prime element of k. Set q=l/vl. The following
theorem is our main tool in this research.

Theorem 1. Let N be the group of k-rational points of a unipotent
algebraic group defined over k. Let T be a distribution of positive type on
N. Then, for any e C(N), the convolution T.a is a bounded function
on N.

3. Let (7 be a universal Chevalley group defined over k in the sense of
Steinberg [6]. Let T be a maximal k-split torus and B be a Borel subgroup
defined over k which contains T. Let N be the unipotent radical of B. Let
G, T, B and N stand for the groups of k-rational points of G, T, B and N
respectively. Let 27 be the root system and A-{a1, a,..., a) be the set of
simple roots determined by (G, B, T), where is the rank of (7. Let 27 be
the set of positive roots and W be the Weyl group. For w e W, set +-
{a e v+ wa0}. We have B=TN=NT and T (resp. N) is generated by
h.(t) (resp. x.(t)) for a e X +, t e k (resp. t e k) in the notation of [6]. If
a e 27, let e Hom (G, T) be the co-root of and set a.=(w)= h.(w) e T.
For a, fl e 27, we set (a, }= (a, f } with the canonical pairing (, } of a
root with a co-root. Let/t. denote the modular function of B. For a quasi-
character Z of T, let PS(Z) denote the space of all locally constant functions
on G which satisfy

(tng)=(t)l/2Z(t)(g) for any t e T, n e N, g e G.
Let (Z) denote the admissible representation of G realized on PS(Z) by right
translations.

Let K be the subgroup of G generated by x.(t), a e X, t e . Then K
is a maximal compact subgroup of G and we have the Iwasawa decom-
position G-BK. We call Z unramified if Z is trivial on T K, the group
generated by h.(t), e X +, t e . Let X be the group of gll unramified
quasi-characters of T. The map Z--(Z(a.), Z(a.), ..., Z(a.)) defines an iso-
morphism X-(C) and we consider X as a complex Lie group. We call Z
regular if wZ =/=Z for any w e W, w =/= 1. Let X (resp. X) denote the set of
all Z e X which are regular (resp. regular and z(z) is irreducible). Let
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w e W. We set X. {z e X wz ;- }, X Xw Xr, Xiw Xw Xi. Taking

x. e K which represents w, we define an intertwining operator T rom
PS(Z) to PS(wZ) by

(T())(g)--[ (xlng)dn, e PS(), g G,
wNw f3 N\N

with the invariant measure dn suitably normalized. This integral is abso-
lutely convergent if Z(a)ll or any a e F+ and can be meromorphically
continued to the whole X T. is holomorphic at Z if Z(a):/: 1 for any a e Yw+.
In particular, T. is holomorphic on Xr.

4. We assume z e X until the end of 5. I (Z) is hermitian, there
exists a unique w e W such that z e Xw, w=1. Then =(Z) is unitarizable if
and only if the Hermitian form

(, ) c [ T())(g)(g)dg ,( 1 ) PS()
JB\G

is positive definite with c= +1. Let w0 be the longest element of W and
be an element o K which represents w0. Since BwoN is the big cell, we see
easily that or every q e C:(N), the exists a unique e PS(Z) such that (n)
=(0n), n e N. We put --(). Then
(2) Tz(qg) T(z(q)))(o0), b e C(N)
defines a distribution on N. By (1), we have

(, )=c [ (T())((oon)(oon)dn, , PS(),
N

and this ormula shows that cTz is of positive type if (Z) is unitarizable.
For a subset J of z, let Wz denote the group generated by the reflexions

obtained rom J and let w be the longest element of Wz. It is known (cf.
[2], p. 225)that ny element of order 2 o W is conjugate to w or some
J. Since (wZ)- =(Z) or any w e W, we may assume Z e X or someWJ

J___/without losing any generality. Let X be the root system generated
by J and set

X+=vX n()-- < > forJ

By Theorem 1, we see that T.f is bounded on N or any f e C:(N) i ()
is unitarizable. We choose f as the characteristic unction of U;, the sub-
group of N K generated by x(t), e X +, t e w. Then we obtain

Theorem 2. Let e Xw and assume that () is unitarizable. Then
we have

q-nz()/2<lZ(a)]<qnz()/2 for any e .
Corollary 3. If wz acts as the multiplication by --1 on J, then we have

( 3 ) q-<l(a)l<q for any
If Z e X, then () has the unique irreducible quotient (cf. [1], p. 304),

which we denote by . In the similar way as above, we obtain
Proposition 4. If Z e X and z is unitarizable, then we have

q-(/2lZ(a) for any X.
5. We combine Corollary 3 with certain deformation arguments on

representations.
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Proposition 5. Let W, Wl, W e W be elements of order 2 such that
v=ww., l(w)=l(w)+l(w), where denotes the length. Let p" [0, 1]--X
and Pl" [0, 1]-->Xw be continuous maps. Put Zt=p(t), Z=p(t) for OGtG1.
We assume the following conditions.

( ) Zo=Z.
(ii) /9(0, 1]___Xw and p(O, 1]c__Xw.
(iii) For any +w, Xo(G)1, q.
(iv) For any e +w, Z0(a.)= 1.

Then u(Zo) (resp. u(Zto)) is unitarizable for some to e (0, 1] if and only if
(resp. u(Z)) is unitarizable for 0Kt_l.

We consider the cases of types B, C and D separately (we omit the
discussion for type A). We realize 2: as in "Planches" of Bourbaki [2].
Without losing any generality, we may normalize J in the following forms.
If 27 is of type B or C, J={al, , "’’,a-,an, an+, "’’,a-,}, 2mn.
We put n t+ 1 if J. If 2’ is of type D, J--{, , ., _} UJ, where

Jl--{on,On+l, ...,oQ_I,o}, 2mn, [Jl14 and even, or J1--0, 2mG-I or

JG{a_, a}, 2m--1.
Under these normalizations, w acts as -1 on J. Hence (3) is a neces-

sary condition for the unitarizability.

Theorem6 Assume G is of type Y and let X e X where Y B, CWJ

or D. Then u(Z) is unitarizable if and only if the conditions (3) and (Y) are

satisfied. Here
(B) 7(a.) 0 if e J, Z(a.2_ ,) 0 if J.
(C) The number of indices i such that Z(a)O, ni<=, is even.
(D) Z(a,)O for any J.
We can prove this theorem by induction on IJI applying Proposition 5

and its variants.

6. Let Z e X. Then u(Z) is of finite length and has a unique spherical
is unitari-(cf. [3]). Let P be the set of all Z e X such that uconstituent

zable. Then P is a compact subset of X which is stable under W.
Theorem 7. Assume G is of classical type and let Z e X. If 7:(Z) is

irreducible and unitarizable, then Z belongs to the closure of P X.
Since we have determined P g X explicitly by Theorem 6, this com-

pletes the determination of unitarizability of (Z), Z e X, when (Z) is irre-
ducible.
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