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Limiting Amplitude Principle for Acoustic Propagators
in Perturbed Stratified Fluids

By Koji KIKUCHI*) and Hideo TAMURA**)

(Communicated by K6saku YOSIDA, M. ft. A., Sept. 12, 1989)

Introduction. Recently the spectral problems for acoustic operators
L--:--c(x)2z] in perturbed stratified fluids have been studied by several
authors ([1], [2], [7], [8]). Under suitable assumptions on the behavior of
sound speed c(x) at infinity, non-existence of eigenvalues and the principle
of limiting absorption have been proved for the operator L. In the pre-
sent note we study the principle of limiting amplitude for L which has not
been discussed in detail in the works above.

1. Limiting amplitude principle. The precise formulation of the
obtained result requires several notations and assumptions.

We work in the 3-dimensional space R and write the coordinates in

R as x.--(y, z) with y e R and z :=(z, z2) e R. Let z] be the 3-dimensional
Laplace operator and let Co(y)>O be the sound speed in the fluid under
consideration, which depends on the depth variable y only. In particular,
we here are interested in the cse where Co(y) takes the constant values c_,
Co and c/ for y<O, O<y<h and y>h, respectively. Then the acoustic
wave in the stratified fluid is governed by the wave equation 32u/3t2-
Co(y)2zJu--O. On the other hand, the coustic wave in a perturbed stratified
fluid which we consider here is also governed by a similar equation 2u/3t
--c(x)2zlu=O, where the sound speed c(x) is assumed to satisfy the follow-
ing assumptions"

(A.1) O<:c<=c(x)<=c, for some c and c.
(A.2) c(x)-co(y)=O(Ixl-,), Ixl--oo, for some p>l.

We consider the above wve equation in the Hilbert space L2(R;
c(x)-2dx). Define the acoustic operator L as L----c(x)2z]. Then L is sym-
metric in this space and it admits a unique selfadjoint realization. We de-
note by the same notation L this self-adjoint realization and by R(; L),
Im eve0, the resolvent of L; R(;L)=(L--)-. As is easily seen, the oper-
ator L is positive (zero is not an eigenvalue) and the domain D(L) is given
by D(L)=H2(R), Hs(R) being the Sobolev space of order s. We here sum-
marize the spectral properties of L obtained by the works [1], [2], [7] and
[8] under assumptions (A.1) and (A.2): (i) L has no eigenvalues; (ii) The
boundary values R(2_+i0; L), 2>.0, of R(2+/-i; L) as --0 exist as an oper-
ator from L into L_ for a>l/2, where L=L(Rx) is the weighted L
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spce defined by Lo=L(R; (l+lxl)dx); (iii) The opertors R(2+i0; L)-
Lo--LLo, al/2, have the locM HSlder continuity in )0 in the uniform
operator topology. Among these results, (i) has been proved by [8].

We now 2ormulate the main theorem. Consider the Cauchy problem
( 1 ) u/t2+ Lu= exp (--it)f, >0,
with zero initial conditions u(0, x)=(u/3t)(O, x)=0. Then we obtain the
following result on the asymptotic behavior as t of the solution u(t, x)
to problem (1).

Theorem. Let the notations be as above. Assume that c_#c+ and
L(R) with a>3/2, then thethat (A 1) and (A.’2) are satisfied. If f is in

solution u(t, x) to (1) behaves like
u(t, x)=exp(-itJ)R(w.iO; L)f+o(1), t,

strongly in L (
The theorem above implies the validity of the limiting amplitude

principle for the operator L.
2. Sketch of proof. The proof is based on the abstract theorem due

to Eidus [3]. According to this theorem, the main theorem above follows
from the two properties below of the resolvent R(2i0; L)" (R.1) local
HSlder continuity in 20 in the uniform operator topology from L into

LS for a3/2; (R.2) behavior at low frequencies
I[R(2i0 L)] =O(2-), 2-0,

for some d, 0dl/2, where ]]. ]]z denotes the operator norm from L
into L. Property (R.1) has been already established. Thus it suffices to
verify the property (R.2) only.

To prove this property, it is convenient to work in the usual space
L(R) rather than in the original space L(R;c(x)-dx). Let the positive
constants c_, c0 and c+ be as above. We deal with only the case c0 c_ c+
with normalization c+ 1. A similar argument with a slight modification
applies to the other cases. We also consider only the low frequency 2,

021. Set V(x)=c(x)--c:=c(x)--I and define the self-adjoint oper-
ator K(2) acting on the space L by K(2)=--d-2V. Then we have

R(2i L)=Q(2i K(2))c(x) -,
where Q(2i; K(2))=(K(2)-(2ic(x)-)) -. We assert that for 3/2
(2) (i; K())I =o(log 21)
as 20 uniformly in , 0(1. This implies (R.2) immediately. The
proof of (2) is done by making use of the commutator method due to
Mourre [5].

We consider only the + case. Let Z(x) e C(R), 0GxG1, be a smooth
cut-off function such that has support in {x" x]’2} and X=l on ]xl.
For )0 small enough, we set

V(x) V0(y) +x(x)(c(x)-- c0(y)-)
with Vo(y)=Co(y)---cl, so that V(x)=V(x) for [x’e-. We also define
the self-adjoint operator K(e;2) as K(e; 2)=-d-RV. Let A=(--i/2)
(x.V+V. x) be the generator of the dilation unitary group. Then we have
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Lemma. Let the notations be as above. Let f(s) e C:(R), 0=<f=l,
be a function such that f has support in (2/3, 32) and f=l on [2/2,
Then, for , 0<=o, small enough, the commutator B(e; 2)=[K(e; 2), A]
satisfies

M(; 2)--if(K(2))B( )f(K())f(K())
in the form sense, where0 is independent of , 02((1.

The lemm above plays central role in proving the resolvent estimate
(2) at low frequencies by use of the commutator method and this is proved
by constructing explicitly the Green function of the ordinary differential
operator d / dy Vo(y).

Remark. The original Mourre commutator method is applied to K(2)
rather thn to K(e, ). This requires the assumption

x. However, we can dispense with such a restrictive assumption by
introducing an -dependent cut-off on the coefficient V(x.) (see Tamur [6]).

The above lemma enables us to define
G(; )=(K()--ic(x)--ieM(e 2))-" LL

for , 01 nd , 0e0. By the differential inequality technique
initiated by Mourre, we cn prove that for a3/2

p, p> 1, being as in (A.’2), and

uniformly in . Then it ollows that
G(z 2)[ O(I log 2 l), 20,

uniformly in and e. This proves the assertion (2).
3. Remark. We shall explain briefly the reason why the additional

assumption c_ c+ is assumed in the statement of main theorem. If 0<c0
< c_ c +, then the ordinary differential operator d2/dy22V0(y) with Vo(y)
=Co(y)--c has at least one negative eigenvalue for any 2>0 small
enough. This makes it difficult to prove the resolvent estimate (R.2) at
low frequencies and more elaborate analysis seems to be required to over-
come such a difficulty. This is the reason why we do not consider the case
c_ =c+ here.

The details will be discussed in Kikuchi-Tamura [4].
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