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Introduction. We are concerned with the Lie group G of C-loops
in a connected, simply connected complex simple Lie group G, its Lie
algebra , and a central extension of . The Lie algebra of algebraic
loops in the Lie algebra of G has a universal central extension called
an affine Lie algebra, and the corresponding 2-cocycle Z(., .) was ex-
plicitly given in [1]. We extend the 2-cocycle of after [2], and get a
central extension of . is one of the simplest infinite-dimensional
Kac-Moody algebras. The corresponding Kac-Moody group is a 1-
dimensional central extension of the group of algebraic loops in G
(cf. [1], [7], [4], and [5]).

Since the kernel of the adjoint action Ad of on , is precisely
the center C of , O/C acts on through Ad, and the set of invariants
in under this action is just the center of . The action on induces
the adjoint action of G on . The main purpose of this article is to
construct a completed version of this fact for the pair of the infinite-
dimensional Lie group G and the Lie algebra .

1. The coefficient extension from C to Zk--Ck(S1)o Let L "--C(S),
the algebra of C-functions on S. This becomes a Banach algebr if
we introduce a norm I. I as

a I." sup 1(5a) (e2" C---it) for a e L,
rR,j=O,...,k

where 3 is a differential operator on Sx, defined by

(a) (e2r)" 1 d a (e2’ ---i).
2z/- 1 dr

Let n be a positive integer and i=0, 1,2,..., n. Define derivations

Di on the polynomial ring P;n "=L[X1,..., X] by DiXi,=*,,, and D,a=O
for i’=l,2,...,n, ae L. For a bounded closed subset B in (L) and a
non-negative integer ], put

Ifl;," =sup l(Df)(b)l, for f e P;n,
m,b

where sup is taken over all m=(m, ., mn) e (Z>o) satisfying [ml" =m
+...q-mn<__], and all b=(b,...,b)eB, and D means DT’D...Dn.
Let C;(B) be the completion of the normed space (P:, I" I;,).

Let U be an open set in (L)n, and C;(U) the space of maps f" U
--L, which satisfy that, for any u e U, there exist a bounded closed
neighbourhood B o u in (L) and g e C;(B) such that f(b)=g(b)for
Vb e B. We define Df(u) as Dg(u) for m e (Z>__o), ml<=].
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Proposition 1.1. Every f C;(U) is CJ-map of U into L.
Let V be an open set in Cn. V(L) is open in (L). For reCk(V),

we define a may V(f) of V(L) into L by (f)(al, ..-, an)(t)’=f(a(t),
.., a(t)) or (a, .-., an) e V(L), t e S.

Proposition 1.2. maps C/(V) into C;(V(L)).
For an open subset U o (L)n, and m e Z>0, put

C;(U (L)) =C;(U) C;(U) (m times).
The ollowing proposition is clear from Proposition 1.1.

Proposition 1.:. Every element in C;(U (L)) is a C-map from
U into (L).

For every element f=(f,..., f) in C/(V;C) (=the space of C/-
maps rom V into C), we put

(f) -=-(f(fl), ..., (fn)).
The same fact as Proposition 1.2 holds or this new V as ollows.

Proposition 1.4. For any f C/(V C), V(f) belongs to C;J(V(L)
(L))

Let L, be the real form of L consisting of the real valued unctions.
All the above results are also true or L,.

2. Structure of the space o" loops in a manifold. Let k =0, 1,
2,..., and M be an n-dimensional C-manifold. We denote by M(L)
the space o C-loops in M"

M(L)={f" S>M;f is of class C}.
For another finite-dimensional manifold M’, and a C-map F rom M into
M’, we define a map (L) into M’(L) by

V(F)(f)(s)’=F(f(s)) or f e M(L), s e S1.

Proposition 2.1. There exists a topology on M(L), with respect to
which the above V(F)’s are continuous, and the decomposition of M(L)
into the connected components with this topology, is exactly given by the
homotopy classes of M.

Now, we consider the case of a Lie group M. Thanks to Propositions
2.1 and 1.4, M(L) becomes a Lie group with tangent space (L)m as
ollows.

Theorem 2.:. Let M be a finite-dimensional Lie group, and k=0, 1,
2,..., c. For any coordinate neighbourhood (V, ) of 1 in M, there exists
a unique Lie group structure on M(L) in which a coordinate neighbour-
hood of 1 is given by (V(L), ()). This structure is independent from
the choice of (V, ). For another Lie group M’ of finite dimension, any
open subset U of M, and a C-map F of U into M’, the map (F) o U(L)
into M’(L) is of class C.

:. A completed affine Lie algebra. Let H be a Cartan subgroup
of G, and I) its Lie algebra. Denote by A the root system o (, ), and
a choice of the set o positive roots, and H={, ..., a} the set o simple
roots in A/. Take a Chevalley basis x( e ), h, ., h e
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Proposition :3.1 [6]. The normalizer N of H in G is generated by the
elements w(s) --exp(sx)exp(--s-lx_)exp(sx) with c e z], and s e C. For
any c e , s e C, the element h(s)’-w(1)-lw(s) belongs to H, and the
map (s,..., s,)--h,(sl).., h,(s) defines a Lie group isomorphism of (C)
onto H.

We can define an involutive antilinear antiautomorphism on by

x,**"--x,, h*’-h, or i--1, ..., 1. We extend this involution and the Killing
orm B(.,.) on to , by

B (f, g)’=.I: B(f(e /----lr), g(e: 4r))drf*(s) f(s)*,

for f, g e , s e S’.
Then, f-+f* is an involutive antilinear antiautomorphism, B(., .) is a
non-degenerate invariant symmetric bilinear form.

From now on, we always assume kl. Put Z(f, g)’--B(3f, g) for
f, g e , where is the derivation on defined in the same way as in 1.

Lemma 3.2. Z(., .) is a continuous 2-cocycle on .
Let be the 1-dimensional central extension of corresponding to

the 2-cocycle Z(., .), and [., .] be the bracket product on . As a vector
space, is equal to the direct sum +Cc, where c represents 1 e C.
Thanks to the continuity of Z(., .), becomes naturally a Banach Lie
algebra. We remark that the 2-cocycle Z(., .) coincides with the usual
one (cf., [3, 7.1] and [2, 1.1]) on the dense subalgebra . Hence, the
Banach Lie algebra contains densely the usual affine Lie algebra .

4. An action of G on . Let k be a positive integer. Denote
by [-,.]0 the bracket product on , and by Ado the adjoint action of G
on the loop algebra .

Lemma 4.1. For each g in G, there exists a unique element z in

-1 such that
Z(Ado(g)x, Ado(g)y)--Z(x, y)+ B(zq, [x, Y]0) for Vx, y .

For each g e G, define a linear operator Ad(g) on by
Ad(g)(x+rc)" --Ado(g)x+(B(z, x)+r)c for x e , r e C.

Theorem 4.2. Ad" g-Ad(g) is a group-homomorphism of G into the
group Aut() of homeomorphic automorphisms on , and is of class C.

Since the 2-cocycle Z(., -) is 3-invariant" Z(3x, y) + Z(x, 3y)-- 0 for
Vx, y , 3 defines, by 3c=0, a continuous linear map from into _,
denoted by the same symbol 3. It satisfies the derivation property
[3x, y]+ [x, y]=0 for Vx, y e .

We put " =C3+, and extend the bracket product on to a bilinear
map e : (X, y)-+[X, y] e -1 by

[r3+x,r3+x]’=r3x-r3x+[x,x] for reC, xe (i-1,2).
For each g e G, we extend the operator Ad(g) on to the linear

map from into _, by
1 B(z, z)c,Ad(g)O’=O/ z----
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Proposition 4.3. Let k2.
i) [Ad(g)x, Ad(g)y]--Ad(g)[x, y] for yg G, vx, y e .

ii) Ad(g)Ad(g’)x--Ad(gg’)x for Vg, g’ G, Vx .
5. Weyl group of the completed affine Lie algebra. The dense

subalgebra "=/C o , is one of Kac-Moody algebras o affine type
with tier number 1 [3, 7.1], and its Cartan subalgebra is given by e.__
/CC+ C3. The intersection o with = [, ] is given by =/Cc.
and e are maximal abelian subalgebras of , and respectively. Put

H’--H(L)G. By Proposition 3.1 and Theorem 2.2, we see that
(L) "- (L) (fl, ..’, ft)--->h,l(f).., h.,(f) e H

is a Lie group isomorphism.
Let z and 2’ be centralizers in of and e respectively. Making

use of the results in 4, we get
Theorem 5.2. 2={h,l(A)...h.(f); A,...,f eexp(L)}, and 2e=H.
We denote by 2 and e the normalizers in of and e respectively.
Theorem 5.3. f--N., and
e--]’--N.{h.l(Cl) h,,(C’) n, ..., n e Z, C, ..., C e C},

where " S1--ScC is the identity map.
Put //r’-’-/e/2e and

T’--{h.(Cn) h.(CtTM) n, ..., n e Z, C, ..., C, C}.
Since NT=H=2 and N normalizes T, we have I?V=(N/H)(T/H).
We see that the mapping T g-+z gives an isomorphism of T/H onto
the coroot lattice o (g, ). Thus,

Theorem 5.4. The quotient groups 1/ and 1/2" are both iso-
morphic to the affine Weyl group I?V=W canonically, where W and

are the Weyl group and the coroot lattice of (, ) respectively.
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