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This is continued from [1].

5. The ideas of the proofs of the results given in Sections 3 and 4 are
similar. Here we shall prove only Theorem 1. The proof is based on
some ideas of Sendov [3] and the author [2]. We begin with a well known
lemma of Sendov, which he used in the approximation theory.

Lemma 1 ([3], [4]). Let f be a periodic function with period 1, and
let y be its modulus of nonmonotonicity (on R). Suppose also that x e R
and 6=0. Then:

(@) The inequality f()=< f(x)+ pu(20) holds either for all t e [x, x+4d],
or for all t e [x—9, x].

(b) The inequality ()= f(x)—p(20) holds either for all t e [z, x+4dl,
or for all t e [x—9, x].

In what follows, a periodic function K with period 1 is said to be a
1
kernel if it is nonnegative, even and I K@@)dt=1.
0

Lemma 2. Let f be as in Theorem 1, and let yu be its modulus of non-
monotonicity. Suppose also that K is a kernel, and set

K(fs 90)=J1 FOK({E—z)dt for all x € R.

Then:

(i) For every 6¢(0,1/2],

1 1< 2 @8+ | K (Fy DlI+2@I S | — p(48) L’ K(tdt.
(i) For every 6=1/2,
I FIS p o)+ K (5 I

Proof. (i) Letdoe[0,1/2] and ze R. TFirst we shall prove that
(1 @) Kwat=p@) [ K@at+2is) | KO+ 1K Ol

According to Lemma 1-(a) the inequality

(2) SJO = (@) -+ p(40)
holds either for all ¢ € [z, x+ 251, or for all ¢t e [x—2d, x].

Suppose first that (2) holds for all ¢ € [#, x+26]. In this case we shall
obtain an upper bound for the value of K(f; x+8). We have

(3) K(f; x+5)=ffﬂ ft+z+HK@)dE

since f is a periodic function with period 1. Now we write K(f; #+4) in
the form



18 P. D. ProINOV [Vol. 65(A),

3 - 1/2
@ Kie+d)=[ st+era@a+(| -:,ﬁj,,/ )+ o+ DL
=Ix+Izy
where the meanings of I, and I, are clear.
Note that if t e [—4, 6], then

reZt+ue+éax+24.
Hence, from (2) we conclude that
(5) F@+a+0)< f (@) + p1(40)
for these values of t. From the last inequality, we get
(6) L= (7 (@) + 1(48) Jf“ K(byt.
On the other hand, it is easy to see that

1/2

(7) n=2ls) | Kat

since 6 €[0,1/2]. Combining (4), (6) and (7), we obtain

(8)  JK(5e+d=@ o) [ Koatv2ls) | Kwoat,
which implies

bl il 1/2

(9) —f@ [ K®at<us) [ Koat+2)r) [ KOdt+|Ks Ol

Now suppose that (5) holds for all t e [x—25, «]. Then using the same
method as in the first alternative we can show the validity of (8) but with
K(f; x—0) in place of K(f; x+4), from which we again arrive at (9).

Further, using Lemma 1-(b) and repeating all the above arguments we
can obtain (9) but with f(x) r K(®)dt in the left-hand side. Thus the
inequality (1) is proved. ’

Since z is an arbitrary real number, we can replace f(x) in (1) with
£l Then the new inequality can be written in the form

1/2 1/2 1/2
(1-2["Kwat)is1s(1-2 () Kodt)uad)+21 71 | B@at+1HG5 1,
which implies the desired inequality in case of § € [0,1/2].

(ii) Now let §=1/2 and xe R. To prove the desired inequality it is
sufficient to show that
(10) | @) < p@O) + K5 ).

Let us consider again the inequality (2). Suppose first that it holds
for all te [x, x+25]. Now note that if te [—1/2, 1/2] then te [—4,45], and
so (5) holds for te [—1/2, 1/2]. From (5) and (3), we deduce

H(T5 o+ DZ(G @)+ o) [ Rtdt= 1)+ u4a),
which implies the inequality
[¢h)) —f@Z p@O)+ || K5 DI

If (2) holds for all te[x—d,x], then we estimate K(f; x—4) and again
arrive at (11).

Analogously, we can prove (11) with f(z) in place of — f(x), and so
(10) is proved. Q.E.D.
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In what follows, for an integrable function f on [0,1] and a positive
integer m, we denote by ¢,(f) the mth Fejér integral of f, i.e.,

a.(f; x)=ﬂ FOF,(t—2x)dt for all x € R,

where

F. (b =_L( SiI'I mmt )2
m sinrxt

is the mth Fejér kernel®. We note that for every d e [0,1/2],
2
(12) j 5 Fm(t)dt<—— f — (cot ) [ (xm) <1/ (x*m).
3 sin? nt

Lemma 3. Let f be as in Theorem 1, and let p be its modulus of non-
monotonicity. Then for every positive integer m and every real a>1, we
have

13 a+1 ( 16a ) - c I
(13) Ifll= 5 “a—Dm +allea(f; )
Proof. Let me Nand a>1. We can suppose that
14 > a+1 ( 160 )
(19 I71 ’(a—1)m
since otherwise there is nothing to prove. Now set
40,
15 0=
(15) (a—1)m
From (14) and (15), we conclude that
(16) 2(| f|l— p(40)>apn(46) =0.

Suppose first that § € [0,1/2]. Applying Lemma 2-(i) to the mth Fejér
kernel we obtain

I FIZp@D+10urs DI+2@1 7|3 [ Futtiat,

From this, (12) and (16), we get

[ = p@O)+llon(f; D422 fll—p@4d) ] (@*md).
The last inequality can be written in the form

1—4/@mo) || fII=A—2/(=*md)) p(46) +la. (S5 ),
which according to (15) coincides with

nfn< “+1 243 +on(F 3 1l

and so (13) is proved in case of del0,1/2].
Now suppose that §=>1/2. Applying Lemma 2-(ii) to the mth Fejér
kernel we get

I f1l=p@d)+6.(f 5 II= p40)+alla.(f; ),

which coincides with (13). Q.E.D.
Lemma 4. Let f be as in Theorem 1, and let p be its modulus of non-

monotonicity. Suppose also that I F@)dt=0. Then for every positive

at1
2

*  As usual the mth Fejér kernel equals m if ¢t is an integer.
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integer m and every real a>>1, we have
AIERE S Y L T Y W
==t a—nm ) = 2w M

Proof. Let me Nanda>1. According to Lemma 8 it is sufficient to
show that

<1 1)
low(f 3 )Hgﬂ;(k m)if(h)l-

A proof of the last inequality is given in [2]. Q.E.D.

Proof of Theorem. Let meN and a>1. It is easy to see that the
function ¢ defined on R by

1
p@=r@—| st
satisfies the conditions of Lemma 4, i.e., ¢ is periodic with period 1,
1
Riemann-integrable on [0, 1], and j e(t)dt=0. Therefore, from Lemma 4
0

we have
SoH~1 ( 3 16a ) a (_1___1_) o
lol= 5% Wes —mm) = 2 (= S
Now taking into account that [f1=I[p]<2|¢l, u(f;d=plp;d) and f(h)=
¢(h), we get the desired inequality for the oscillation of f. Q.E.D.
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