39. Zeta Zeros, Hurwitz Zeta Functions and L(1, $\chi)$

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. a., May 12, 1989)

§ 1. Introduction. Let a be a positive number <1. We are concerned with the value distribution of the Hurwitz zeta function $\zeta(s, a)=$ $\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}$ (for $\operatorname{Re}(s)>1$), at the zeros of the Riemann zeta function $\zeta(s)$.

Although $\zeta(s, a)$ has many good properties like $\zeta(s)$, it fails to have the Euler product formula except when $a=1 / 2$, in which case we have $\zeta(s, 1 / 2)=\left(2^{s}-1\right) \zeta(s)$. So it might be interesting to clarify how any problem concerning $\zeta(s, a)$ depends on a. We assume the Riemann Hypothesis throughout this article and prove the following theorem. To state our theorem, we put $L_{a}(1)=\sum_{n=1}^{\infty} \frac{e(-n a)}{n}$ with $e(y)=e^{2 \pi i y}$ and $\Lambda(x)=\log p$ if $x=p^{k}$ with a prime number p and an integer $k \geq 1$, and $=0$ otherwise. We denote the imaginary parts of the zeros of $\zeta(s)$ by γ.

Theorem. For any positive $a<1$,

$$
\lim _{T \rightarrow \infty} \frac{2 \pi}{T} \sum_{0<r \leq T} \zeta\left(\frac{1}{2}+i \gamma, a\right)=-\Lambda\left(\frac{1}{a}\right)-L_{a}(1)
$$

From this theorem we see first that for any integer $k \geq 2$,

$$
\begin{aligned}
& 1+\frac{1}{2}+\cdots+\frac{1}{k-1}-\frac{k-1}{k}+\frac{1}{k+1}+\frac{1}{k+2}+\cdots \\
& +\frac{1}{2 k-1}-\frac{k-1}{2 k}+\frac{1}{2 k+1}+\cdots \\
& =\log k
\end{aligned}
$$

since $\sum_{b=1}^{k-1} \zeta(s, b / k)=\left(k^{s}-1\right) \zeta(s)$ and $\sum_{b=1}^{k-1} \Lambda(k / b)=\sum_{m \mid k} \Lambda(m)=\log k$. (We know, of course, that this can be proved in an elementary way.)

We see next that for any primitive character $\chi \bmod q \geq 3$,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} & \frac{2 \pi}{T} \sum_{b=1}^{q-1} \bar{\chi}(b) \sum_{0<r \leq T} \zeta\left(\frac{1}{2}+i \gamma, \frac{b}{q}\right) \\
& =-\sum_{b=1}^{q-1} \bar{\chi}(b) \Lambda\left(\frac{q}{b}\right)-\sum_{b=1}^{q-1} L_{b / q}(1) \bar{\chi}(b) \\
& =-\Lambda(q)-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{b=1}^{q-1} e\left(-\frac{b}{q} n\right) \bar{\chi}(b) \\
& =-\Lambda(q)-\bar{\tau}(\chi) L(1, \chi),
\end{aligned}
$$

where $L(s, \chi)$ is the Dirichlet L-function and $\tau(\chi)=\sum_{b=1}^{q} \chi(b) e(b / q)$. Moreover since $\zeta(s, b / q)$ can be written as a linear combination of L-functions, we get the following new expressions of $L(1, \chi)$ (cf. also [5] and [6] for other type of expressions).

Corollary. For any primitive character $\chi \bmod q \geq 3$,

$$
\begin{aligned}
L(1, \chi) & =-\lim _{T \rightarrow \infty} \frac{2 \pi}{T} \sum_{0<r \leq T}\left(\sum_{b=1}^{q-1} \bar{\chi}(b) \zeta\left(\frac{1}{2}+i r, \frac{b}{q}\right)-q^{(1 / 2)+i r}\right) \frac{1}{\bar{\tau}(\chi)} \\
& =-\lim _{T \rightarrow \infty} \frac{2 \pi}{T} \sum_{0<r \leq T} \frac{q^{(1 / 2)+i r}}{\bar{\tau}(\chi)}\left(L\left(\frac{1}{2}+i r, \bar{\chi}\right)-1\right) .
\end{aligned}
$$

We should remark that this corollary can be proved directly by evaluating the sum $\sum_{0<r \leq T} x^{(1 / 2)+i \gamma}(L((1 / 2)+i \gamma, \bar{\chi})-1)$. In fact, it should be compared with the result (cf. [2] and [3]) for $x=1$;

$$
\lim _{T \rightarrow \infty} \frac{2 \pi}{T} \sum_{0<r \leq T}\left(L\left(\frac{1}{2}+i \gamma, \bar{\chi}\right)-1\right)=-L(1, \chi) \bar{\tau}(\chi) \frac{\mu(q)}{\varphi(q)}+\frac{L^{\prime}}{L}(1, \bar{\chi})
$$

where $\mu(q)$ is the Möbius function and $\varphi(q)$ is the Euler function. We remark also that our results can be extended to the zeros of Dirichlet L functions. These will appear elsewhere.

To prove our theorem we shall use the following lemmas which are the refinements of Theorems 1^{\prime} and 2^{\prime} in [2] and can be obtained by refining the author's proof in [1] (cf. [4]).

Lemma A. For $x>1$ and $T>T_{0}$, we have

$$
\begin{aligned}
\sum_{0<r \leq T} x^{i r}= & -\frac{T}{2 \pi} \frac{\Lambda(x)}{\sqrt{x}}+M(x, T)+O(\sqrt{x} \log (2 x)) \\
& +O\left(\frac{1}{\sqrt{x}} \sum_{\substack{x / 2><n<2 x \\
n \neq x}} \Lambda(n) \operatorname{Min}\left(T, \frac{1}{\left|\log \left(\frac{x}{n}\right)\right|}\right)\right) \\
& +O\left(\sqrt{x} \sqrt{\frac{\log T}{\log \log T}}\right)+O\left(x^{1 / \log \log T} \log (2 x) \frac{\log T}{\log \log T}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
M(x, T) & \equiv \frac{1}{2 \pi} \int_{1}^{T} x^{i t} \log \left(\frac{t}{2 \pi}\right) d t \\
& = \begin{cases}\frac{x^{i T} \log (T / 2 \pi)}{2 \pi i \log x}+O\left(\frac{1}{\log x}+\frac{1}{\log ^{2} x}\right) & \text { if } \frac{1}{\log T}<\log x \\
O\left(\operatorname{Min}\left(\frac{\log T}{\log x}, T \log T\right)\right) & \text { if } \log x \ll \frac{1}{\log T}\end{cases}
\end{aligned}
$$

Lemma B. Suppose that $0<(2 \pi \alpha / b) \leq Y<T,(T / 2 \pi \alpha) \gg 1$ and $T>T_{0}$. Then we have for any positive $b \leq 2$,

$$
\begin{aligned}
\sum_{Y<r \leq T} e & \left(\frac{b r}{2 \pi} \log \frac{b r}{2 \pi e \alpha}\right) \\
= & -e^{\pi i / 4} \frac{\sqrt{\alpha}}{b} \sum_{(Y b / 2 \pi \alpha)} \sum_{\leq n \leq(T b b / 2 \pi \alpha)^{b}} \Lambda(n) n^{(1 / 2)((1 / b)-1)} e\left(-\alpha n^{1 / b}\right) \\
& +O\left(T^{2 / 5}\left(\frac{T}{2 \pi \alpha}\right)^{b / 2}\right)+O\left(\left(T^{1 / 2}\left(\frac{T}{2 \pi \alpha}\right)^{-b / 2}+Y^{1 / 2}\left(\frac{Y}{2 \pi \alpha}\right)^{-b / 2}\right) \log \frac{T}{2 \pi \alpha}\right) \\
& +O\left(\log T \cdot \operatorname{Min}\left(\frac{1}{\log \frac{Y}{2 \pi \alpha}}, \sqrt{\alpha}+1\right)\right) .
\end{aligned}
$$

§ 2. Proof of Theorem. We suppose that $(1 / T) \ll \log 1 / a$. Using the approximate functional equation of $\zeta(s, a)$ due to Rane (cf. p. 204 of [9]), we get

$$
\begin{aligned}
\sum_{0<r \leq T} \zeta\left(\frac{1}{2}+i \gamma, a\right)= & \sum_{0<r \leq T} \sum_{0 \leq n \leq \sqrt{r / 2 \pi}}(n+a)^{-(1 / 2)-i r} \\
& +\sum_{0<r \leq T} e\left(-\frac{\gamma}{2 \pi} \log \frac{\gamma}{2 \pi e}\right) e^{\pi i / 4} \sum_{1 \leq m \leq \sqrt{r / 2 \pi}} e(-m a) m^{-(1 / 2)+i r} \\
& +O\left(\sum_{0<r \leq T} \gamma^{-1 / 4}\right) \\
= & a^{-1 / 2} \sum_{0<r \leq T} a^{-i \gamma}+\sum_{1 \leq n \leq \sqrt{T / 2 \pi}}(n+a)^{-1 / 2} \sum_{2 \pi n^{2} \leq r \leq T}(n+\alpha)^{-i \gamma} \\
& +e^{\pi i / 4} \sum_{1 \leq m \leq \sqrt{T / 2 \pi}} e(-m a) m^{-1 / 2} \sum_{2 \pi m^{2} \leq r \leq T} e\left(-\frac{\gamma}{2 \pi} \log \frac{\gamma}{2 \pi e m}\right) \\
& +O\left(T^{3 / 4} \log T\right) \\
= & S_{1}+S_{2}+S_{3}+O\left(T^{3 / 4} \log T\right), \text { say. }
\end{aligned}
$$

Using Lemma A , we get

$$
\begin{aligned}
S_{1}= & -\frac{T}{2 \pi} \Lambda\left(\frac{1}{a}\right)+O\left(\frac{1}{a} \log \left(\frac{2}{a}\right)\right)+O\left(\frac{\log T}{\log \frac{1}{a} \cdot \sqrt{a}}\right) \\
& +O\left(\sum_{\substack{(1 / 2 a)<n<2(11 a) \\
n \neq 1 / a)}} \Lambda(n) \operatorname{Min}\left(T, \frac{1}{\left|\log \left(\frac{1}{n a}\right)\right|}\right)\right) \\
& +O\left(\frac{1}{a} \sqrt{\frac{\log T}{\log \log T}}\right)+O\left(\frac{1}{\sqrt{a}}\left(\frac{1}{a}\right)^{1 / \log \log T} \log \left(\frac{2}{a}\right) \frac{\log T}{\log \log T}\right) \\
= & -\frac{T}{2 \pi} \Lambda\left(\frac{1}{a}\right)+O\left(\frac{1}{a} \log \left(\frac{2}{a}\right) \log \log \left(\frac{3}{a}\right)\right)+O\left(\frac{\log T}{\log \frac{1}{a} \cdot \sqrt{a}}\right) \\
& +O\left(\frac{1}{a} \sqrt{\frac{\log T}{\log \log T}}\right)+O\left(\Lambda(n(a)) \operatorname{Min}\left(T, \frac{1 / a}{\left|\frac{1}{a}-n(a)\right|}\right)\right) \\
& +O\left(\frac{1}{\sqrt{a}}\left(\frac{1}{a}\right)^{1 / \log \log T} \log \left(\frac{2}{a}\right) \frac{\log T}{\log \log T}\right),
\end{aligned}
$$

where $n(a)$ is the nearest integer to $1 / a$ other than $1 / a$ itself.
Using Lemma A, we get also

$$
\begin{aligned}
S_{2}= & \sum_{1 \leq n \leq \sqrt{T / 2 \pi}} \frac{1}{\sqrt{n+a}}\left\{O(\sqrt{n+a} \log (n+a))+O\left(\frac{\log T}{\log (n+a)}\right)\right. \\
& +O\left(\frac{1}{\sqrt{n+a}} \sum_{\substack{(1 / 2)(n+a)<m<2(n+a) \\
m \neq n+a}} \Lambda(m) \frac{1}{\left|\log \left(\frac{m}{n+a}\right)\right|}\right) \\
& \left.+O\left((n+a)^{1 / \log \log T} \log (2(n+a)) \frac{\log T}{\log \log T}\right)\right\} \\
= & O(\sqrt{T} \log T)+O\left(\sum_{1 \leq n \leq \sqrt{T / 2 \pi}}(1 / 2)\left(\begin{array}{c}
(n+a)<m<2(n+a) \\
m \neq n, n+1 \\
=
\end{array} \frac{\Lambda(m)}{|n+a-m|}\right)+O\left(\sum_{1 \leq n \leq \sqrt{T / 2 \pi}} \frac{\Lambda(n)}{\|a\|}\right)\right. \\
= & O\left(\sqrt{T}\left(\log T \cdot \log \log T+\frac{1}{\|a\|}\right)\right),
\end{aligned}
$$

where $\|a\|=\operatorname{Min}(a, 1-a)$.
Using Lemma B, we get

$$
\begin{aligned}
S_{3}= & e^{\pi i / 4} \sum_{1 \leq m \leq \sqrt{T / 2 \pi}} e(-m a) m^{-1 / 2}\left\{-e^{-\pi i / 4} \sqrt{m} \sum_{m<n<(T / 2 \pi m)} \Lambda(n)\right. \\
& \left.+O\left(T^{9 / 10} \frac{1}{\sqrt{m}}\right)+O(\sqrt{m} \log T)+O\left(\frac{\log T}{\log (3 m)}\right)\right\} \\
= & -\frac{T}{2 \pi} \sum_{1 \leq m \leq \sqrt{T / 2 \pi}} \frac{e(-m a)}{m}+\sum_{1 \leq m \leq \sqrt{T / 2 \pi}} m \cdot e(-m a)+O\left(T^{9 / 10} \log T\right) \\
= & -\frac{T}{2 \pi} \sum_{m=1}^{\infty} \frac{e(-m a)}{m}+O\left(\frac{\sqrt{T}}{\|a\|}\right)+O\left(T^{9 / 10} \log T\right)
\end{aligned}
$$

Thus if we fix a, then we get

$$
\sum_{0<r \leq T} \zeta\left(\frac{1}{2}+i \gamma, a\right)=-\frac{T}{2 \pi}\left(\Lambda\left(\frac{1}{a}\right)+L_{a}(1)\right)+O\left(T^{9 / 10} \log T\right)
$$

This proves our theorem with the remainder term.

References

[1] A. Fujii: On the uniformity of the distribution of the zeros of the Riemann zeta function. II. Comment. Math. Univ. St. Pauli, 31, 99-113 (1982).
[2] --: Uniform distribution of the zeros of the Riemann zeta function and the mean value theorems of Dirichlet L-functions. Proc. Japan Acad., 63A, 370-373 (1987).
[3] ——: Zeta zeros and Dirichlet L-functions. ibid., 64A, 215-218 (1988).
[4] --: On a theorem of Landau. ibid., 65A, 51-54 (1989).
[5] --: Zeros, eigenvalues and arithmetic. ibid., 60A, 22-25 (1984).
[6] --: Arithmetic of some zeta function connected with the eigenvalues of the Laplace-Beltrami operator. Advanced Studies in pure Math., 13, 237-260 (1988).
[7] D. A. Goldston: On a result of Littlewood concerning prime numbers. II. Acta Arith., XLIII, 49-51 (1983).
[8] S. Gonek: A formula of Landau and mean values of $\zeta(s)$. Topics in Analytic Number Theory. Univ. of Texas Press, 92-97 (1985).
[9] V. V. Rane: On the mean square value of Dirichlet L-series. J. London Math. Soc., 21, 203-205 (1980).

