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35. An Elementary Proof of an Order Preserving Inequality
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An operator means a bounded linear operator on a Hilbert space. By
only using the idea of polar decomposition, here we give an elementary
proof of the following “order preserving inequality” in [1].

Theorem. If A=B=0, then for each r=0
(1) (B’A”B’)l/q_Z_B(P +21)/q
holds for each p and q such that p=0, =1 and (1+2r)q=p+2r.

Proof. First of all, we cite (*) by Lowner-Heinz theorem.

(*) A>B>=0 ensures A*>B* for any « € [0, 1].

In the case 1=p=0, the result is obvious by (*). We have only to consider
p=1and ¢=(p-+2r)/(A+2r) since (1) for values q larger than (p+27)/(14+27)
follows by (*). We may assume that A and B are invertible without loss
of generality. Let B"A?”?=UH be the polar decomposition of the invertible
operator B”A*? where U means the unitary and H=|B"A?*|. In the case
1=>2r>0, A= B" holds by (*), then for g=(p+2r)/(1+427)

B "(B"A*B")Y'B-"=B-"(UH*U*)"'"B~-"=B-"UH"'U*B~"
=A1n/2H—1H2/qH—1Ap/2=Ap/2(H2)1/4—1A:o/2
=Ap/2(A—p/ZB—2rA—p/2)1— /9 Av/2
Z_Ap/Z(A—p/ZA—ZrA-p/Z)(p— n/w+ir) Ap/2

=A>B,
so we have the following (2) for ¢=(p+2r)/(1+27) and for any r € [0, 1/2]
(2) (BrApBr)l/qu1+Zr.

Put A, =(B"A?B")Y? and B,=B'**. Repeating (2) again for A,>B,>0,
0<7r,<1/2 and p,;=1

(BirApByyYez Bt for q,=(p,+2r) /(1 +2r).
Put p,=¢=1 and r,=1/2, then
( 3 ) {BZT+1/2ApBZr+1/2}1/q12 BZ(1+27).
Put s=2r+1/2. Then q,=(p,+2r)/(1+2r)=(p+2s)/(1+2s) since p,=¢q
and 2(1+2r)=1+2s. Consequently (3) means that (2) holds for 7 € [0, 3/2]
since re[0,1/2] and s=2r-+1/2 and repeating this method, (2) holds for
each r=0, that is, (1) is shown.
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