34. Unique Solvability of Nonlinear Fuchsian Equations

By Nour Said Madi*) and Masafumi Yoshino**)
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1989)

1. Introduction. Let $p \geq 2$ and $q \geq 0$ be integers, and let $x=\left(x_{1}, \cdots\right.$, x_{p}) and $y=\left(y_{1}, \cdots, y_{q}\right)$ be the variables in C^{p} and C^{q}, respectively. We denote by Z and N the set of integers and that of nonnegative integers, respectively. For a multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{p}\right) \in \boldsymbol{Z}^{p}$, we set $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{p}^{\alpha_{p}}$, $|\alpha|=\alpha_{1}+\cdots+\alpha_{p}$.

Let $m \geq 1$. Then we shall prove the unique solvability of nonlinear Fuchsian equations
(1) $\quad a\left(x, y ; D_{x}^{\alpha} D_{y}^{\beta} x^{r} u ;|\alpha|=|\gamma| \leq m,|\alpha|+|\beta| \leq m\right)=0$, where $a\left(x, y ; z_{\alpha \beta r}\right)$ is a holomorphic function of x, y and $z=\left(z_{\alpha \beta \gamma}\right)$. Because the study of the case $p=1$ is classical (cf. [1]), we are interested in the case $p \geq 2$. Madi [3] solved (1) under a so-called Poincare condition if $\alpha=\gamma$ and if (1) is linear. But, in the general case $\alpha \neq \gamma$, the definition of a Poincare condition is not clear. We also have a problem of a derivative loss which is caused by nonlinear terms in (1) such that $\beta \neq 0$.

We shall define a Poincare condition for (1) so that it extends the one in [3] in a natural way. Then we show the existence and uniqueness of solutions of (1) with an additional weak spectral condition (A.3). A deeper connection between the generalized Poincare condition and the Hilbert factorization problem is also discussed.

The proof is done by a reduction to a system of equations on a scale of Banach spaces, which enables us to estimate the derivative loss of nonlinear terms.
2. Statement of results. We denote by $C_{y}\{\{x\}\}$ the set of all formal power series $\sum_{\alpha \in N^{p}} u_{\alpha}(y) x^{\alpha}$ where $u_{\alpha}(y)$ are analytic functions of y in some neighborhood of the origin independent of α. We denote by $\boldsymbol{C}_{y}\{x\}$ the set of analytic functions of x and y at the origin. For a positive number $a \leq 1$, we define a ball \boldsymbol{B}_{a} by $\boldsymbol{B}_{a}=\left\{y \in \boldsymbol{C}^{q} ;\left|y_{i}\right|<a, i=1, \cdots, q\right\}$.

Let $A \subset\left\{\alpha \in Z^{p} ;|\alpha| \geq 0\right\}$ and $B \subset N^{q}$ be finite sets. Let π be the projection onto $\boldsymbol{C}_{y}\{\{x\}\}$;

$$
\begin{equation*}
\pi x^{\alpha} u(x, y)=\sum_{\eta, \eta+\alpha \geq 0} u_{\eta}(y) x^{\eta+\alpha}, u(x, y)=\sum_{\eta \geq 0} u_{\eta}(y) x^{\eta} \in \boldsymbol{C}_{y}\{\{x\}\} . \tag{2}
\end{equation*}
$$

We denote by $p_{\alpha \beta}(\partial)(\alpha \in A, \beta \in B)$ multipliers of order $m_{\alpha \beta}$ given by

$$
\begin{equation*}
p_{\alpha \beta}(\partial) v(x, y)=\sum_{\eta \geq 0} v_{\eta}(y) p_{\alpha \beta}(\eta) x^{\eta}, \quad v(x, y)=\sum_{\eta \geq 0} v_{\eta}(y) x^{\eta} \in \boldsymbol{C}_{y}\{\{x\}\}, \tag{3}
\end{equation*}
$$

[^0]where $p_{\alpha \beta}(\eta)$ are symbols of constant-coefficients classical pseudo-differential operators of order $m_{\alpha \beta}$. We denote by $p_{\alpha \beta}^{0}(\eta)$ the principal part of $p_{\alpha \beta}(\eta)$.

Let $F\left(x, y, z_{\alpha \beta}\right), \alpha \in A, \beta \in B$ be holomorphic in some neighborhood of the origin $x=0, y=0, z_{\alpha \beta}=0$ such that $F(0, y, 0) \equiv 0$. Then we shall study the solvability and uniqueness of the following equation

$$
\begin{equation*}
F\left(x, y, p_{\alpha \beta}(\partial) \pi x^{\alpha} D_{y}^{\beta} u ; m_{\alpha \beta}+|\beta| \leq 0\right)=0 . \tag{4}
\end{equation*}
$$

We assume
(A.1) $\quad p_{\alpha \beta}=0 \quad$ if $|\alpha|=0, \alpha \in A$ and $\beta \neq 0$.

We set $\Phi_{\alpha}(y)=\left(\partial F / \partial z_{\alpha 0}\right)(0, y, 0)$ if $\alpha \in A,=0$ if otherwise. For $\nu=0,1,2$, \cdots, let us define the set J_{ν} by
(5) $\quad J_{\nu}=\left\{\eta \in Z^{p} ; \eta=\zeta-(\nu, 0, \cdots, 0), \zeta \in N^{p},|\zeta|=\nu\right\}$.

Let n_{ν} be the number of elements of J_{ν}. Then we line up all elements of J_{ν} in some way, and we define the n_{ν} square matrix $\mathscr{B}_{\nu}(y, \eta)$ by

$$
\begin{equation*}
\mathcal{B}_{\nu}(y, \eta)=\left(\Phi_{\mu-r}(y) p_{\mu-r, 0}^{0}(\eta)\right)_{\mu, r \in J_{\nu}} \tag{6}
\end{equation*}
$$

that is, the (μ, γ) component of $\mathscr{B}_{\nu}(y, \eta)$ is given by $\Phi_{\mu-\gamma}(y) p_{\mu-\gamma, 0}^{0}(\eta)$.
Let $|\cdot|_{1}$ denote the usual l_{1}-norm on a finite dimensional vector space, that is, the sum of absolute values of all components. We denote by $\overline{\boldsymbol{B}}_{a}$ the closure of the set \boldsymbol{B}_{a}. Then we assume
(A.2) There exist $c>0$ and $\nu_{0} \geq 0$ such that, for any $\nu \geq \nu_{0}$ and $\eta \in \boldsymbol{R}^{p}$, $|\eta|=1$, and all $y \in \overline{\boldsymbol{B}}_{a}$, the following estimate holds:

$$
\begin{gather*}
\left|\mathscr{B}_{2}(y, \eta) X\right|_{1} \geq c|X|_{1} \quad \text { for all } X \in C^{n_{\nu}} . \tag{7}\\
\sum_{\substack{|\alpha|=0, \alpha \neq 0 \\
\alpha \in A}}\left|p _ { \alpha , 0 } (\eta) \left\|\Phi _ { \alpha } (0) \left|<\left|p_{0,0}(\eta) \| \Phi_{0}(0)\right| \quad \text { for all } \eta \in N^{p} .\right.\right.\right.
\end{gather*}
$$

(A. 3)

Then our main result is
Theorem 1. Suppose (A.1), (A.2), and (A.3). Then the equation (4) has a unique solution $u(x, y)$ such that $u(0, y) \equiv 0$ which is holomorphic in some neighborhood of the origin of $x=0, y=0$.

Example 2 (Fuchsian equations). Let us consider (1). We easily see that, for every $\alpha, \gamma \in N^{p},|\alpha|=|\gamma|$

$$
D_{x}^{\alpha} x^{\gamma}=\left\{\prod_{j=1}^{p}\left(\partial_{j}+\alpha_{j}\right) \cdots\left(\partial_{j}+1\right)\right\} \pi x^{\gamma-\alpha}, \quad \partial_{j}=x_{j} D_{x_{j}}, \quad j=1, \cdots, p .
$$

We set $v=\Lambda^{-m} u$ where Λ denotes the multiplier with the symbol $\left(1+|\eta|^{2}\right)^{1 / 2}$. Substituting these relations into (1) we can reduce (1) to (4).

Especially, if $\alpha=\gamma$ in (1), then we can reduce (1) to (4) such that $p_{\alpha \beta}=0$ if $\alpha \neq 0$. Hence, the matrix $\mathscr{B}_{\nu}(y, \eta)$ is a diagonal one, which implies that the conditions (A.2) and (A.3) are equivalent to a so-called Poincare condition. Moreover (A. 3) is equivalent to that $p_{0 \beta}=0$ if $\beta \neq 0$. Thus, by Theorem 1-(1) has a unique solution if it satisfies a Poincare condition (cf. [3]).

Finally, we assume $p=2$, and we shall give the relation between (A.2) and the factorization of a certain polynomial.

Let $\eta \in \boldsymbol{R}^{2},|\eta|=1, y \in \bar{B}_{a}$, and let $U \mathcal{A}_{\eta}$ denote the set of functions $g(t, y, \eta)$ of $t \in C,|t|=1$ having an absolutely convergent Fourier expansion of $t=e^{i \theta}$ which converges uniformly with respect to $\eta \in \boldsymbol{R}^{2},|\eta|=1$ and
$y \in \overline{\boldsymbol{B}}_{a}$. Moreover let $U \mathscr{A}_{n}^{+}$(resp. UA_{n}^{-}) denote the subset of functions of $U \mathcal{A}_{\eta}$ whose negative (resp. positive) Fourier coefficients vanish. Every function $g_{+}(t, y, \eta) \in U \mathcal{A}_{\eta}^{+}$(resp. $g_{-}(t, y, \eta) \in U_{\mathcal{A}_{\eta}^{-}}$) can be extended to an analytic function in $|t| \leq 1$ (resp. $|t| \geq 1$) in terms of its Fourier expansion. We denote them with the same letter.

We say that $g(t, y, \eta) \in Q \mathcal{A _ { \eta }}$ is uniformly factorizable with respect to $\eta \in \boldsymbol{R}^{2},|\eta|=1$ and $y \in \overline{\boldsymbol{B}}_{a}$ if there exist functions $g_{ \pm}(t, y, \eta) \in \mathcal{U} \mathscr{A}_{\eta}^{ \pm}$such that $g_{ \pm}(t, y, \eta) \neq 0$ for all $(t, y, \eta) \in\left\{C \times \bar{B}_{a} \times \boldsymbol{R}^{2} ;|\eta|=1,|t|^{ \pm 1} \leq 1\right\}, g_{ \pm}(t, y, \eta)^{-1}$ $\in U \mathcal{A}_{\eta}^{ \pm}$and that $g(t, y, \eta)=g_{+}(t, y, \eta) g_{-}(t, y, \eta)$.

We set, for $\eta \in \boldsymbol{R}^{2},|\eta|=1$ and $y \in \overline{\boldsymbol{B}}_{a}$

$$
\begin{equation*}
\sigma_{P}(t, y, \eta)=\sum_{\alpha, \alpha_{1}+\alpha_{2}=0} \Phi_{\alpha}(y) p_{\alpha_{0}}^{0}(\eta) t^{\alpha_{1}} \tag{8}
\end{equation*}
$$

Then $\sigma_{P}(t, y, \eta) \in U A_{\eta}$ by definition. Let us define the winding number $I_{\eta}\left(\sigma_{P}\right)$ of $\sigma_{P}(t, y, \eta)$ at the origin when t moves on the unit circle S^{1} by (9)

$$
I_{\eta}\left(\sigma_{P}\right)=(2 \pi)^{-1} \Delta_{t \in S^{1}} \arg \sigma_{P}(t, y, \eta) .
$$

Then we have
Proposition 3. (a) Suppose $p=2$ and that $\sigma_{P}(t, y, \eta)$ is uniformly factorizable. Then we have (A.2).
(b) $\sigma_{P}(t, y, \eta)$ is uniformly factorizable if and only if the following conditions are satisfied: (i) $\sigma_{P}\left(e^{i \theta}, y, \eta\right) \neq 0$ for all $0 \leq \theta \leq \pi, \eta \in \boldsymbol{R}^{2},|\eta|=1$, $y \in \overline{\boldsymbol{B}}_{a}$. (ii) $I_{\eta}\left(\sigma_{P}\right)=0$ for all $\eta \in \boldsymbol{R}^{2},|\eta|=1, y \in \overline{\boldsymbol{B}}_{a}$.

References

[1] M. S. Baouendi and C. Goulouic: Cauchy problems with characteristic initial hypersurface. Comm. Pure Appl. Math., 26, 455-475 (1973).
[2] N. S. Madi: Problème de Goursat holomorphe à variables Fuchsiennes. Bull. Sc. Math., 111, 291-312 (1987).
[3] -_: Solutions locales pour des opérateurs holomorphes en plusieurs variables (à paraitre).
[4] F. Treves: Ovchyannikov theorem and hyperdifferential operators. Notas de Matematica, 46, I.M.P.A., Brazil (1968).
[5] C. Wagschal: Une généralisation du problème de Goursat pour des système d'équations intégro-differentielles ou partiellement holomorphes. J. Math. Pures Appl., 53, 99-132 (1974).
[6] M. Yoshino: Convergence of formal solutions for Fuchs-Goursat equations. J. Diff. Eqs., 74, 266-284 (1988).

[^0]: *) Département de mathématiques, Fac. des Sciences, Rabat, Maroc.
 **) Department of Mathematics, Tokyo Metropolitan University, Japan.

