34. Unique Solvability of Nonlinear Fuchsian Equations

By Nour Said MADI*¹ and Masafumi YOSHINO**¹

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1989)

1. Introduction. Let $p \ge 2$ and $q \ge 0$ be integers, and let $x = (x_1, \dots, x_p)$ and $y = (y_1, \dots, y_q)$ be the variables in C^p and C^q , respectively. We denote by Z and N the set of integers and that of nonnegative integers, respectively. For a multi-index $\alpha = (\alpha_1, \dots, \alpha_p) \in Z^p$, we set $x^{\alpha} = x_1^{\alpha_1} \cdots x_p^{\alpha_p}$, $|\alpha| = \alpha_1 + \cdots + \alpha_p$.

Let $m \ge 1$. Then we shall prove the unique solvability of nonlinear Fuchsian equations

(1) $a(x, y; D_x^{\alpha} D_y^{\beta} x^{\gamma} u; |\alpha| = |\gamma| \le m, |\alpha| + |\beta| \le m) = 0,$

where $a(x, y; z_{\alpha\beta\gamma})$ is a holomorphic function of x, y and $z = (z_{\alpha\beta\gamma})$. Because the study of the case p=1 is classical (cf. [1]), we are interested in the case $p \ge 2$. Madi [3] solved (1) under a so-called Poincare condition if $\alpha = \gamma$ and if (1) is linear. But, in the general case $\alpha \neq \gamma$, the definition of a Poincare condition is not clear. We also have a problem of a derivative loss which is caused by nonlinear terms in (1) such that $\beta \neq 0$.

We shall define a Poincare condition for (1) so that it extends the one in [3] in a natural way. Then we show the existence and uniqueness of solutions of (1) with an additional weak spectral condition (A.3). A deeper connection between the generalized Poincare condition and the Hilbert factorization problem is also discussed.

The proof is done by a reduction to a system of equations on a scale of Banach spaces, which enables us to estimate the derivative loss of nonlinear terms.

2. Statement of results. We denote by $C_y\{\{x\}\}$ the set of all formal power series $\sum_{\alpha \in N^p} u_{\alpha}(y) x^{\alpha}$ where $u_{\alpha}(y)$ are analytic functions of y in some neighborhood of the origin independent of α . We denote by $C_y\{x\}$ the set of analytic functions of x and y at the origin. For a positive number $a \leq 1$, we define a ball B_a by $B_a = \{y \in C^a; |y_i| < a, i = 1, \dots, q\}$.

Let $A \subset \{\alpha \in \mathbb{Z}^p; |\alpha| \ge 0\}$ and $B \subset \mathbb{N}^q$ be finite sets. Let π be the projection onto $C_{y}\{\{x\}\}$;

(2)
$$\pi x^{\alpha} u(x, y) = \sum_{\eta, \eta + \alpha \ge 0} u_{\eta}(y) x^{\eta + \alpha}, \quad u(x, y) = \sum_{\eta \ge 0} u_{\eta}(y) x^{\eta} \in C_{y} \{ \{x\} \}.$$

We denote by $p_{\alpha\beta}(\partial)$ ($\alpha \in A, \beta \in B$) multipliers of order $m_{\alpha\beta}$ given by

$$(3) \qquad p_{\alpha\beta}(\partial) v(x,y) = \sum_{\eta \ge 0} v_{\eta}(y) p_{\alpha\beta}(\eta) x^{\eta}, \quad v(x,y) = \sum_{\eta \ge 0} v_{\eta}(y) x^{\eta} \in C_{y}\{\{x\}\},$$

^{*)} Département de mathématiques, Fac. des Sciences, Rabat, Maroc.

^{**)} Department of Mathematics, Tokyo Metropolitan University, Japan.

where $p_{ab}(\eta)$ are symbols of constant-coefficients classical pseudo-differential operators of order $m_{\alpha\beta}$. We denote by $p_{\alpha\beta}^0(\eta)$ the principal part of $p_{\alpha\beta}(\eta)$.

Let $F(x, y, z_{\alpha\beta})$, $\alpha \in A$, $\beta \in B$ be holomorphic in some neighborhood of the origin $x=0, y=0, z_{\alpha\beta}=0$ such that $F(0, y, 0)\equiv 0$. Then we shall study the solvability and uniqueness of the following equation (4

$$F(x, y, p_{\alpha\beta}(\partial)\pi x^{\alpha}D_{y}^{\beta}u; m_{\alpha\beta}+|\beta| \leq 0) = 0.$$

We assume

(A. 1) $p_{\alpha\beta} = 0$ if $|\alpha| = 0$, $\alpha \in A$ and $\beta \neq 0$.

We set $\Phi_{\alpha}(y) = (\partial F / \partial z_{\alpha 0})(0, y, 0)$ if $\alpha \in A$, =0 if otherwise. For $\nu = 0, 1, 2,$ \cdots , let us define the set J_{ν} by

(5)
$$J_{\nu} = \{ \eta \in \mathbb{Z}^{p} ; \eta = \zeta - (\nu, 0, \dots, 0), \zeta \in \mathbb{N}^{p}, |\zeta| = \nu \}.$$

Let n_{ν} be the number of elements of J_{ν} . Then we line up all elements of J_{ν} in some way, and we define the n_{ν} square matrix $\mathscr{B}_{\nu}(y,\eta)$ by (6) $\mathcal{B}_{\nu}(y,\eta) = (\Phi_{\mu-r}(y) p^{0}_{\mu-r,0}(\eta))_{\mu,r\in J_{\nu}}$

that is, the $(\mu, \tilde{\gamma})$ component of $\mathscr{B}_{\nu}(y, \eta)$ is given by $\Phi_{\mu-\gamma}(y)p_{\mu-\gamma,0}^{0}(\eta)$.

Let $|\cdot|_1$ denote the usual l_1 -norm on a finite dimensional vector space, that is, the sum of absolute values of all components. We denote by B_a the closure of the set B_a . Then we assume

(A.2) There exist c>0 and $\nu_0 \ge 0$ such that, for any $\nu \ge \nu_0$ and $\eta \in \mathbb{R}^p$, $|\eta|=1$, and all $y \in \overline{B}_a$, the following estimate holds:

 $|\mathscr{B}_{\nu}(y,\eta)X|_{\scriptscriptstyle 1} \ge c|X|_{\scriptscriptstyle 1}$ for all $X \in C^{n_{y}}$. (7) $\sum_{|\alpha|=0,lpha\neq0top lpha=0}|p_{lpha,0}(\eta)||\varPhi_{lpha}(0)|\!<\!|p_{0,0}(\eta)||\varPhi_{0}(0)|\qquad ext{for all }\eta\in N^p.$ (A. 3)

Then our main result is

Theorem 1. Suppose (A.1), (A.2), and (A.3). Then the equation (4) has a unique solution u(x, y) such that $u(0, y) \equiv 0$ which is holomorphic in some neighborhood of the origin of x=0, y=0.

Example 2 (Fuchsian equations). Let us consider (1). We easily see that, for every α , $\gamma \in N^p$, $|\alpha| = |\gamma|$

$$D_x^{\alpha} x^{\gamma} = \left\{ \prod_{j=1}^p (\partial_j + \alpha_j) \cdots (\partial_j + 1) \right\} \pi x^{\gamma - \alpha}, \quad \partial_j = x_j D_{x_j}, \quad j = 1, \cdots, p.$$

We set $v = \Lambda^{-m} u$ where Λ denotes the multiplier with the symbol $(1+|\eta|^2)^{1/2}$. Substituting these relations into (1) we can reduce (1) to (4).

Especially, if $\alpha = \gamma$ in (1), then we can reduce (1) to (4) such that $p_{\alpha\beta}=0$ if $\alpha\neq 0$. Hence, the matrix $\mathcal{B}_{\nu}(y,\eta)$ is a diagonal one, which implies that the conditions (A. 2) and (A. 3) are equivalent to a so-called Poincare condition. Moreover (A. 3) is equivalent to that $p_{0\beta}=0$ if $\beta \neq 0$. Thus, by Theorem 1-(1) has a unique solution if it satisfies a Poincare condition (cf. [3]).

Finally, we assume p=2, and we shall give the relation between (A.2) and the factorization of a certain polynomial.

Let $\eta \in \mathbf{R}^2$, $|\eta| = 1$, $y \in \overline{B}_a$, and let \mathcal{UA}_{η} denote the set of functions $g(t, y, \eta)$ of $t \in C$, |t|=1 having an absolutely convergent Fourier expansion of $t = e^{i\theta}$ which converges uniformly with respect to $\eta \in \mathbf{R}^2$, $|\eta| = 1$ and $y \in \overline{B}_a$. Moreover let \mathcal{UA}_{η}^+ (resp. \mathcal{UA}_{η}^-) denote the subset of functions of \mathcal{UA}_{η} whose negative (resp. positive) Fourier coefficients vanish. Every function $g_+(t, y, \eta) \in \mathcal{UA}_{\eta}^+$ (resp. $g_-(t, y, \eta) \in \mathcal{UA}_{\eta}^-$) can be extended to an analytic function in $|t| \leq 1$ (resp. $|t| \geq 1$) in terms of its Fourier expansion. We denote them with the same letter.

We say that $g(t, y, \eta) \in \mathcal{UA}_{\eta}$ is uniformly factorizable with respect to $\eta \in \mathbf{R}^2$, $|\eta| = 1$ and $y \in \overline{\mathbf{B}}_a$ if there exist functions $g_{\pm}(t, y, \eta) \in \mathcal{UA}_{\eta}^{\pm}$ such that $g_{\pm}(t, y, \eta) \neq 0$ for all $(t, y, \eta) \in \{C \times \overline{\mathbf{B}}_a \times \mathbf{R}^2; |\eta| = 1, |t|^{\pm 1} \leq 1\}$, $g_{\pm}(t, y, \eta)^{-1}$ $\in \mathcal{UA}_{\eta}^{\pm}$ and that $g(t, y, \eta) = g_{+}(t, y, \eta)g_{-}(t, y, \eta)$.

We set, for $\eta \in \mathbf{R}^2$, $|\eta| = 1$ and $y \in \overline{\mathbf{B}}_a$

(8)
$$\sigma_P(t, y, \eta) = \sum_{\alpha, \alpha_1 + \alpha_2 = 0} \Phi_{\alpha}(y) p^0_{\alpha_0}(\eta) t^{\alpha_1}.$$

Then $\sigma_P(t, y, \eta) \in \mathcal{UA}_{\eta}$ by definition. Let us define the winding number $I_{\eta}(\sigma_P)$ of $\sigma_P(t, y, \eta)$ at the origin when t moves on the unit circle S^1 by (9) $I_{\eta}(\sigma_P) = (2\pi)^{-1} \mathcal{A}_{t \in S^1} \arg \sigma_P(t, y, \eta).$

Then we have

Proposition 3. (a) Suppose p=2 and that $\sigma_P(t, y, \eta)$ is uniformly factorizable. Then we have (A.2).

(b) $\sigma_P(t, y, \eta)$ is uniformly factorizable if and only if the following conditions are satisfied: (i) $\sigma_P(e^{i\theta}, y, \eta) \neq 0$ for all $0 \leq \theta \leq \pi$, $\eta \in \mathbf{R}^2$, $|\eta| = 1$, $y \in \overline{B}_a$. (ii) $I_{\eta}(\sigma_P) = 0$ for all $\eta \in \mathbf{R}^2$, $|\eta| = 1$, $y \in \overline{B}_a$.

References

- M. S. Baouendi and C. Goulouic: Cauchy problems with characteristic initial hypersurface. Comm. Pure Appl. Math., 26, 455-475 (1973).
- [2] N. S. Madi: Problème de Goursat holomorphe à variables Fuchsiennes. Bull. Sc. Math., 111, 291-312 (1987).
- [3] ——: Solutions locales pour des opérateurs holomorphes en plusieurs variables (à paraitre).
- [4] F. Treves: Ovchyannikov theorem and hyperdifferential operators. Notas de Matematica, 46, I.M.P.A., Brazil (1968).
- [5] C. Wagschal: Une généralisation du problème de Goursat pour des système d'équations intégro-differentielles ou partiellement holomorphes. J. Math. Pures Appl., 53, 99-132 (1974).
- [6] M. Yoshino: Convergence of formal solutions for Fuchs-Goursat equations. J. Diff. Eqs., 74, 266-284 (1988).

No. 5]