1. Nonlinear Eigenvalue Problem $\Delta u+\lambda e^{u}=0$ on Simply Connected Domains in R^{2}

By Takashi Suzuki*) and Ken’ichi Nagasaki**)
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1989)

§ 1. Introduction and results. In the previous work [3, 4], we studied the connectivity of the branch of minimal solutions \underline{C} starting from $(\lambda, u)=(0,0)$ and that of Weston-Moseley's large solutions C^{*} as $\lambda \downarrow 0$ ($[6,2]$) for the nonlinear eigenvalue problem

$$
\begin{equation*}
-\Delta u=\lambda e^{u}(\text { in } \Omega) \text { and } u=0(\text { on } \partial \Omega), \tag{1.1}
\end{equation*}
$$

where λ is a positive constant, $\Omega \subset \boldsymbol{R}^{2}$ is a simply-connected bounded domain with smooth boundary $\partial \Omega$, and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a classical solution. We have established the connectivity of \underline{C} and C^{*} when Ω is close to a disc. In this note, we shall refine the result and give an explicit criterion for Ω to have such a property for (1.1).

Our basic idea was to parametrize the solutions $h={ }^{T}(u, \lambda)$ of (1.1) through $s=\lambda \int_{\Omega} e^{u} d x$. Thus we introduce the nonlinear mapping $\Phi=$ $\Phi(h, s): \hat{X} \times \boldsymbol{R} \rightarrow \hat{Y}$ by $\Phi(h, s)={ }^{T}\left(\Delta u+\lambda e^{u}, \int_{\Omega} e^{u} d x-(s / \lambda)\right)$ for $h={ }^{T}(u, \lambda)$ and $s \in \boldsymbol{R}_{+}$, where $\hat{X}={ }^{T}\left(X \times \boldsymbol{R}_{+}\right)$and $\hat{Y}={ }^{T}(Y \times \boldsymbol{R})$ with $X=C_{0}^{2+\alpha}(\bar{\Omega}) \equiv\left\{v \in C^{2+\alpha}(\bar{\Omega}) \mid\right.$ $v=0$ on $\partial \Omega\}$ and $Y=C^{\alpha}(\bar{\Omega})$ for $0<\alpha<1$. For this mapping we claim that

Theorem 1. For each zero-point (h, s) of Φ, the linearized operator $d_{h} \Phi(h, s): \hat{X} \rightarrow \hat{Y}$ is invertible provided that $0<s<8 \pi$.

Since the a priori estimates $\|u\|_{\text {oo }(\bar{\Omega})} \leqq-2 \log (1-(s / 8 \pi))$ and $s|\Omega|^{-1}$ $\exp \left(\|u\|_{o(\bar{\Omega})} \leqq \lambda \leqq \bar{\lambda}\right.$ hold if $0<s<8 \pi$ for some $\bar{\lambda}=\bar{\lambda}(\Omega)$, the first part of the following theorem follows immediately from the above one. On the other hand the latter part holds by the fact that $s<4 \pi$ and $s<8 \pi$ imply $\mu_{1}(p)>0$ and $\mu_{2}(p)>0$, respectively, where $\left\{\mu_{j}(p)\right\}_{j=1}^{\infty}\left(-\infty<\mu_{1}(p)<\mu_{2}(p) \leqq \cdots \rightarrow \infty\right)$ are the eigenvalues of $A_{p} \equiv-\Delta-p$ under Dirichlet condition for $p=\lambda e^{u}$:

Theorem 2. In $s-h$ plane, there exists a branch \mathcal{S} of zero-points of Φ starting from $(s, h)=(0,0)$ and continuing up to $s=8 \pi$ without bending, and furthermore, there is no other zero-point of Φ other than S in the area $0<s<8 \pi$. The corresponding branch C in $\lambda-u$ plane to \mathcal{S} starts from $(\lambda, u)=(0,0)$ and bends at most once.

On the other hand, along the Weston-Moselely's branch C^{*} of large solutions, we have from [4] that $S \equiv \lambda \int_{\Omega} e^{u} d x=8 \pi+c \pi \lambda+0(\lambda)$ as $\lambda \downarrow 0$, where $C=C(\Omega)=-\left|a_{1}\right|^{2}+\sum_{n=3}^{\infty}\left(n^{2} /(n-2)\right)\left|a_{n}\right|^{2}$ for the normalized Riemann mapping

[^0]$g=g_{N}: D=\{|z|<1\} \rightarrow \Omega$ with $g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}\left(a_{2}=0\right)$. Thus we obtain
Theorem 3. In the case of $C<0$, Weston-Moseley's branch C^{*} exists uniquely and connects with the minimal branch \underline{C}. The connected branch C bends just once in $\lambda-u$ plane.

In fact $C<0$ implies $\alpha \equiv\left|g_{N}^{\prime \prime}(0) / g_{N}^{\prime}(0)\right|<2$, in which case the constrains for Ω to produce C^{*} are all verified by the method of Wente [5]. We know that $C<0$ holds if $\kappa\left|g^{\prime}\right|<2$ everywhere on $\partial \Omega$, where κ is the curvature of $\partial \Omega$ ([4]). When Ω is a ball, we have $\kappa\left|g^{\prime}\right| \equiv 1$. Incidentally, $\alpha<2$ whenever Ω is convex ([2]). In case $C>0$ or $\alpha>2$, multiple Weston-Moseley's branches may exist, of which global analysis will be a theme in future.
§2. Proof of Theorem 1. Let $\Phi(h, s)=0$ for some $h \in \hat{X}$ and $s \in$ $(0,8 \pi)$. Then, the linearized operator $d_{h} \Phi(h, s)$ can be regarded as a selfadjoint operator in ${ }^{T}\left(L^{2}(\Omega) \times \boldsymbol{R}\right)$ with the domain ${ }^{T}\left(H^{2} \cap H_{0}^{1}(\Omega) \times \boldsymbol{R}\right)$. The associated sesqui-linear form $\mathfrak{U}=\mathfrak{U}($,$) on { }^{T}\left(H_{0}^{1}(\Omega) \times \boldsymbol{R}\right)$ is given for $f={ }^{T}(v, \kappa)$ and $g={ }^{T}(w, \rho)$ that $\mathfrak{H}(f, g)=-a(\tilde{f}, \tilde{g})$, where $a(v, w)=\int_{\Omega}\{\nabla v \cdot \nabla w-p v w\} d x$ for $p=\lambda e^{u}$ and $\tilde{f}=f+(\kappa / \lambda)$ and $\tilde{g}=g+(\rho / \lambda) \in \hat{V} \equiv\left\{v \in H^{1}(\Omega) \mid(\partial / \partial \tau) v=0\right.$ on $\left.\partial \Omega\right\}$ for a unit tangential vector τ. Thus $0 \in \rho\left(d_{h} \Phi(h, s)\right)$ is equivalent to $0 \in$ $\rho\left(\hat{A}_{p}\right)$, where \hat{A}_{p} is the self-adjoint operator in $L^{2}(\Omega)$ associated with $\left.a\right|_{\hat{r} \times \hat{v}}$. See [3] for details.

Putting $\sigma\left(\hat{A}_{p}\right)=\left\{\hat{\mu}_{j}(p)\right\}_{j=1}^{\infty}$ with $-\infty<\hat{\mu}_{1}(p)<\hat{\mu}_{2}(p) \leqq \cdots$, we have $\hat{\mu}_{1}(p)<0$ because constant functions belong to \hat{V}. Furthermore, $\hat{\mu}_{2}(p)>0$ if $s>0$ is small. We shall extend this consequence and show that $\hat{\mu_{2}}(p)>0$ whenever $0<s<8 \pi$. To this end, we first note that this fact holds when $\Omega=D \equiv$ $\{|z|<1\}$. In fact, in this case all solutions are parametrized by $s=\lambda \int_{\Omega} e^{u} d x$ as $\left\{\left(\lambda^{*}(s), u^{*}(s)\right) \mid 0<s<8 \pi\right\}$ with the property that $d_{h} \Phi\left(h^{*}(s), s\right)$ is invertible for $0<s<8 \pi$, where $h^{*}(s)={ }^{T}\left(u^{*}(s), \lambda^{*}(s)\right)([4])$. Hence $\mu_{2}\left(p^{*}(s)\right)>0(0<s<8 \pi)$ holds for $p^{*}(s)=\lambda^{*}(s) e^{u^{*}(s)}$.

Next, we note that $\hat{\mu}_{2}(p)>0$ is equivalent to $\hat{\nu}_{2}(p)>1$, where $\left\{\hat{\nu}_{j}(p)\right\}_{j=1}^{\infty}$ $\left(0=\hat{\nu}_{1}(p)<\hat{\nu}_{2}(p) \leqq \cdots \rightarrow+\infty\right)$ denotes the set of eigenvalues for (EVP) $\quad \varphi \in \hat{V}$ and $\int_{\Omega} \nabla \varphi \cdot \nabla \chi d x=\nu \int_{\Omega} \varphi \chi p d x$ for any $\chi \in \hat{V}$.
The first eigenfunction corresponding to $\hat{\nu}_{1}(p)=0$ for (EVP) is a constant, so that we have $\hat{\nu}_{2}(p)=\operatorname{Inf}\left\{R(v) \mid v \in \hat{V}, \int_{\Omega} v p d x=0\right\}$ by mini-max principle, where $R(v)=\int_{\Omega}|\nabla v|^{2} d x / \int_{\Omega} v^{2} p d x$. Minimizer φ of this variational problem is a second eigenfunction and hence is analytic in Ω and has two nodal domains $\Omega_{ \pm}$in Ω. At least one of $\Omega_{ \pm}$meets $\partial \Omega$. Without loss of generality, we suppose $\partial \Omega_{-} \cap \partial \Omega \neq \varnothing$ and put $\varphi_{ \pm}=(\pm \varphi)^{V} 0$. Here we take generalized Schwarz' symmetrization $\varphi_{-}^{*} \in \hat{V}^{*}$ of φ_{-}([1]) in use of the cannonical radial metric $p^{*} d s^{2}$ on D giving 1/2 Gaussian curvature and $s=\int_{\Omega} p d x=\int_{D} p^{*} d x$, where $\hat{V}^{*}=\left\{v \in H^{1}(D) \mid(\partial / \partial \tau) v=0\right.$ on $\left.\partial D\right\}$. Namely, $\varphi_{-}^{*}(x)=\sup \left\{\mu \mid x \in D_{\mu}^{*}\right\}$,
where D_{μ}^{*} is the concentric disc in D such that $\int_{D_{\mu}^{*}} p^{*} d x=\int_{D^{\mu}} p d x$ for $D_{\mu}=$ $\left\{x \mid \varphi_{-}(x)<\mu\right\}$. Then, we have $\int_{\Omega}\left|\nabla \varphi_{-}\right|^{2} d x \geqq \int_{D}\left|\nabla \varphi_{-}^{*}\right|^{2} d x$ by $\left.\varphi_{-}\right|_{\Omega, \Omega}=0$ as well as $\int_{\Omega} \varphi_{-} p d x=\int_{D} \varphi_{-}^{*} p^{*} d x$ and $\int_{\Omega} \varphi_{-}^{2} p d x=\int_{D} \varphi_{-}^{* 2} p^{*} d x$ ([1]). On the other hand, for φ_{+}we take $\varphi_{+*} \in \hat{V}^{*}$ as $\varphi_{+*}(x)=\operatorname{Inf}\left\{\mu \mid x \in A_{\mu}^{*}\right\}$, where A_{μ}^{*} is the concentric annulus in D such that $\partial D \subset \partial A_{\mu}^{*}$ and $\int_{A^{\mu}} p^{*} d x=\int_{A^{\mu}} p d x$ for $A_{\mu}=$ $\left\{x \mid \varphi_{+}(x)>\mu\right\}$. Then, similar properties hold for this rearrangement ${ }^{11}$. That is, $\int_{\Omega} \varphi_{+} p d x=\int_{D} \varphi_{+*} p^{*} d x, \int_{\Omega} \varphi_{-}^{2} p d x=\int_{D} \varphi_{+*}^{2} p^{*} d x$ and $\int_{\Omega}\left|\nabla \varphi_{+}\right|^{2} d x \geqq$ $\int_{D}\left|\nabla \varphi_{+*}\right|^{2} d x$. Furthermore, $\operatorname{supp} \varphi_{-}^{*} \cap \operatorname{supp} \varphi_{+*}$ is just a circle so that we have for $\varphi^{*}=\varphi_{+*}-\varphi^{*} \in \hat{V}^{*}$ that $\int_{D} \varphi^{*} p^{*} d x=0, \int_{D} \varphi^{* 2} p^{*} d x=\int_{\Omega} \varphi^{2} p d x$ and $\int_{D}\left|\nabla \varphi^{* 2}\right| d x \leqq \int_{\Omega}|\nabla \varphi|^{2} d x$ and hence we obtain $\nu_{2}(p) \geqq \nu_{2}\left(p^{*}\right)=\operatorname{Inf}\left\{R^{*}(v) \mid v \in \hat{V}^{*}\right.$, $\left.\int_{D} v p^{*} d x=0\right\}$, where $R^{*}(v)=\int_{D}|\nabla v|^{2} d x / \int_{D} v^{2} p^{*} d x$. However $p^{*}=\lambda^{*}(s) e^{u^{*}(s)}$, where $h^{*}(s)={ }^{T}\left(u^{*}(s), \lambda^{*}(s)\right)$ is the radial solution of (1.1) for $\Omega=D$ with $s=$ $\int_{\Omega} p^{*} d x$, so that $\nu_{2}\left(p^{*}\right)>1$.

References

[1] Bandle, C.: Isoperimetric Inequalities and Applications. Pitman, Boston, London, Melbourne (1980).
[2] Moseley, J. L.: Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal., 14, 719-735 (1983).
[3] Nagasaki, K. and Suzuki, T.: On a nonlinear eigenvalue problem. Recent Topics in Nonlinear PDE III (eds. Masuda, K. and Suzuki, T.). Kinokuniya, NorthHolland, Tokyo, Amsterdam, pp. 185-218 (1987).
[4] Suzuki, T. and Nagasaki, K.: On the nonlinear eigenvalue problem $\Delta u+\lambda e^{u}=0$ (to appear in Trans. AMS).
[5] Wente, H.: Counter example to a conjecture of H. Hopf. Pacific J. Math., 121, 193-244 (1986).
[6] Weston, V. H.: On the asymptotic solution of a partial differential equation with an exponential nonlinearity. SIAM J. Math. Anal., 9, 1030-1053 (1978).

[^1]
[^0]: *) Department of Mathematics, Faculty of Science, Tokyo Metropolitan University.
 **) Department of Mathematics, Faculty of Engineering, Chiba Institute of Technology.

[^1]: 1) Note that φ is constant on $\partial \Omega$.
