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Nonlinear Eigenvalue Problem /e =0 on Simply
Connected Domains in R

By Takashi SUZUKi*) and Ken’ichi NAGASAKITM

(Communicated by KSsaku YOSIDA, M. J. A., Jan. 12, 1989)

1. Introduction and results. In the previous work [3, 4], we
studied the connectivity of the branch of minimal solutions C starting
from (2, u)-(0, 0) and that of Weston-Mcseley’s large solutions C* as $ 0
([6, 2]) for the nonlinear eigenvalue problem
(1.1) --u=e (in 9) and u--O (on
where is a positive constant, 9cR is a simply-connected bounded do-
main with smooth boundary 3t9, and u e C(9) C() is a classical solution.
We have established the connectivity of C and C* when /2 is close to a
disc. In this note, we shall refine the result and give an explicit criterion
for/2 to have such a property for (1.1).

Our basic idea was to parametrize the solutions h--r(, 2) of (1.1)

through s={" edx. Thus we introduce the nonlinear mapping
d

(h, s)" R-+] by q(h, s)=r(uq-2eu, eUdx--(s/2)) for h=r(u, 2) and
d

s e R+, where )--r(XR+) and I----r(YR) with X-C+()--{v e C2/()
v=0 on 9} and Y=C(9) for 0al. For this mapping we claim that

Theorem 1. For each zero-point (h, s) of , the linearized operator
d(h, s)" - is invertible provided that Os8z.

Since the a priori estimates ]lu]lco(=-21og(1-(s/Sz)) and
exp(]ul]c0()] hold if Os8z for some ]=](), the first part of the
following theorem follows immediately from the above one. On the other
hand the latter part holds by the fact that s4z and s8z imply/l(p)0
and/2(P)0, respectively, where {Z.(p)}=l(-- oo ll(p)l(p). -oo) are
the eigenvalues of A_------z/--p under Dirichlet condition for p=2e

Theorem 2. In s-h plane, there exists a branch of zero-points of
q starting from (s, h)=(0, 0) and continuing up to s=8z without bending,
and furthermore, there is no other zero-point of other than in the area
Os8z. The corresponding branch C in -u plane to starts from
(2, u)=(0, 0) and bends at most once.

On the other hand, along the Weston-Moselely’s branch C* of large

solutions, we have from [4] that S=_ f eudx=8z+c+O() as $ 0, where
3

C= C([2) -1a +:=(n/ (n- 2))Ia for the normalized Riema.n mapping

)

nologg.
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g=g" D={IzI(1)-+D with g(z)=:=oaZ (a2=0). Thus we obtain
Theorem 3. In the case of CO, Weston-Moseley’s branch C* exists

uniquely and connects with the minimal branch C. The connected branch
C bends just once in 2-u plane.

II 0In act C0 implies ----Ig(O)/g( )12, in which case the constrains
or t9 to produce C* are all verified by the method of Wente [5]. We know
that C0 holds if lg’l2 everywhere on , where is the curvature of
32 ([4]). When/2 is a ball, we have lg’[l. Incidentally, a2 whenever
is convex ([2]). In case C0 or a2, multiple Weston-Moseley’s branches
may exist, of which global analysis will be a theme in future.

2. Proof of Theorem 1. Let (h, s)=0 or some h e) and s e
(0, 8z). Then, the linearized operator d(h, s) can be regarded s a self-
adjoint operator in r (L(D) R) with the domain r(H H(tg) R). The as-
sociated sesqui-linear orm I=( ) on r(H(D)R) is given for f=r(v,
and g=r(w, p) that (f, g)=-a(f, ), where a(v, w)=f,, {gv.Vw-pvw}dx
or p=e and f=f+(/) and O=g+(p/) e =_{v eH()l(/3r)v--Oon}
/or a unit tangential vector r. Thus 0 e p(d(h, s)) is equivalent to 0
p(), where is the self-adjoint operator in L(9) associated with
See [3] for details.

Putting a(A)={p(p)}/= with -c <fi,(p)<fi2(p)..., we hve ill(p)<0
because constant functions belong to P. Furthermore, fi(p)O if s>O is
small. We shall extend this consequence and show that fi(p)>0 whenever
0<s<8. To this end, we first note that this fact holds when

In fact, in this case all solutions are parametrized by s=;[ edx{Izl<l}.
J

as {(*(s), u*(s))lO<s<8} with the property that dq(h*(s), s) is invertible
for 0<s<8, where h*(s)=r(u*(s), *(s)) ([4]). Hence/(p*(s))0 (0<s<8)
holds for p*(s)= *(s)eu*().

Next, we note that /9(p)0 is equivalent to (p)l, where {o.(p)}}=
(0=O,(p)<(p)...-+c) denotes the set of eigenvalues for

(EVP) p e 17 and o[VP’’Zdx=’IoPZPdx for any Ze

The first eigenfunction corresponding to ,(p)=0 for (EVP) is a constant,

so that we have (p)=Xnf {R(v)I e I?, vpdx=O} by mini-max principle,

where R(v)=[ IVvldx[ vpdx. Minimizer of this variational problem
J /J

is a second eigenfunction and hence is analytic in t and has two nodal do-
mains 9+/- in 9. At least one of t9 meets 9. Without loss of generality,
we suppose 39_t9=/= and put =(+)0. Here we take generalized
Schwarz’ symmetrization _* e I?* of

_
([1]) in use of the cannonical radial

metric p*ds on D giving 1/2 Gaussian curvature and s=l pdx=l p*dx,
J9 JD

where * ={v e H(D) l(/r)v=O on D}. Namely, *_(x)=sup {/lx e D,*},
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I p*dx=I pdxforD,=where D,* is the concentric disc in D such that .,
{x 19-(x) </}. Then, we have IP’-12dx>= [gdx by

_
0 0 as well as

:_pdx=pp*dx anpdx=p*dx ([1]). On the other hand,

+ we take p** e V* as **(x)=Inf {lx e A}, where A is the con-

centric annulus in D such that ODOA and p*dx= pdx or A=
{x+(x)>}. Then, similar properties hold for this rearrangement.
That is, I,pdx=+,p*dx, ppdx=Iv,p*dx and flg,]dx

dx. Furthermore, suppp suppp+, is just a circle so that we
D

have for p*=p+.-e* thatfvp*p*dx=0, p*p*dx= ppdx

gp*dxgpldx and hence we obtain (p)(p*)=Inf {R*(v)[ve *,
v *dz=0), where R*(v)=Vvd/vp*dz. However * 2*()e*(",

where h*()=r(*(), 2"()) is the radial solution of (1.1) for 9=D with =
s that (p*)> 1.
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Note that is constant on 9.


