1. Nonlinear Eigenvalue Problem $\Delta u + \lambda e^u = 0$ on Simply Connected Domains in R^2

By Takashi SUZUKI*) and Ken'ichi NAGASAKI**)

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)

§1. Introduction and results. In the previous work [3, 4], we studied the connectivity of the branch of minimal solutions <u>C</u> starting from $(\lambda, u) = (0, 0)$ and that of Weston-Moseley's large solutions C^* as $\lambda \downarrow 0$ ([6, 2]) for the nonlinear eigenvalue problem

(1.1) $-\Delta u = \lambda e^u$ (in Ω) and u = 0 (on $\partial \Omega$), where λ is a positive constant, $\Omega \subset \mathbb{R}^2$ is a simply-connected bounded domain with smooth boundary $\partial \Omega$, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a classical solution. We have established the connectivity of \underline{C} and C^* when Ω is close to a disc. In this note, we shall refine the result and give an explicit criterion for Ω to have such a property for (1.1).

Our basic idea was to parametrize the solutions $h = {}^{T}(u, \lambda)$ of (1.1) through $s = \lambda \int_{a} e^{u} dx$. Thus we introduce the nonlinear mapping $\Phi = \Phi(h, s): \hat{X} \times \mathbf{R} \to \hat{Y}$ by $\Phi(h, s) = {}^{T}(\Delta u + \lambda e^{u}, \int_{a} e^{u} dx - (s/\lambda))$ for $h = {}^{T}(u, \lambda)$ and $s \in \mathbf{R}_{+}$, where $\hat{X} = {}^{T}(X \times \mathbf{R}_{+})$ and $\hat{Y} = {}^{T}(Y \times \mathbf{R})$ with $X = C_{0}^{2+\alpha}(\overline{\Omega}) \equiv \{v \in C^{2+\alpha}(\overline{\Omega}) | v = 0 \text{ on } \partial\Omega\}$ and $Y = C^{\alpha}(\overline{\Omega})$ for $0 < \alpha < 1$. For this mapping we claim that

Theorem 1. For each zero-point (h, s) of Φ , the linearized operator $d_h \Phi(h, s) : \hat{X} \rightarrow \hat{Y}$ is invertible provided that $0 < s < 8\pi$.

Since the a priori estimates $||u||_{\mathcal{C}^0(\bar{p})} \leq -2\log(1-(s/8\pi))$ and $s|\Omega|^{-1} \exp(||u||_{\mathcal{C}^0(\bar{p})}) \leq \lambda \leq \bar{\lambda}$ hold if $0 < s < 8\pi$ for some $\bar{\lambda} = \bar{\lambda}(\Omega)$, the first part of the following theorem follows immediately from the above one. On the other hand the latter part holds by the fact that $s < 4\pi$ and $s < 8\pi$ imply $\mu_1(p) > 0$ and $\mu_2(p) > 0$, respectively, where $\{\mu_j(p)\}_{j=1}^{\infty}(-\infty < \mu_1(p) < \mu_2(p) \leq \cdots \rightarrow \infty)$ are the eigenvalues of $A_p \equiv -\mathcal{A} - p$ under Dirichlet condition for $p = \lambda e^u$:

Theorem 2. In s-h plane, there exists a branch S of zero-points of Φ starting from (s, h)=(0, 0) and continuing up to $s=8\pi$ without bending, and furthermore, there is no other zero-point of Φ other than S in the area $0 < s < 8\pi$. The corresponding branch C in $\lambda-u$ plane to S starts from $(\lambda, u)=(0, 0)$ and bends at most once.

On the other hand, along the Weston-Moselely's branch C^* of large solutions, we have from [4] that $S \equiv \lambda \int_{a} e^u dx = 8\pi + c\pi\lambda + 0(\lambda)$ as $\lambda \downarrow 0$, where $C = C(\Omega) = -|a_1|^2 + \sum_{n=3}^{\infty} (n^2/(n-2))|a_n|^2$ for the normalized Riemann mapping

^{*)} Department of Mathematics, Faculty of Science, Tokyo Metropolitan University.

^{**)} Department of Mathematics, Faculty of Engineering, Chiba Institute of Technology.

 $g = g_N$: $D = \{|z| \le 1\} \rightarrow \Omega$ with $g(z) = \sum_{n=0}^{\infty} a_n z^n$ $(a_2 = 0)$. Thus we obtain

Theorem 3. In the case of C < 0, Weston-Moseley's branch C^* exists uniquely and connects with the minimal branch \underline{C} . The connected branch C bends just once in $\lambda - u$ plane.

In fact C<0 implies $\alpha \equiv |g_N''(0)/g_N'(0)| < 2$, in which case the constrains for Ω to produce C^* are all verified by the method of Wente [5]. We know that C<0 holds if $\kappa |g'| < 2$ everywhere on $\partial\Omega$, where κ is the curvature of $\partial\Omega$ ([4]). When Ω is a ball, we have $\kappa |g'| \equiv 1$. Incidentally, $\alpha < 2$ whenever Ω is convex ([2]). In case C>0 or $\alpha>2$, multiple Weston-Moseley's branches may exist, of which global analysis will be a theme in future.

§ 2. Proof of Theorem 1. Let $\Phi(h, s)=0$ for some $h \in \hat{X}$ and $s \in (0, 8\pi)$. Then, the linearized operator $d_h \Phi(h, s)$ can be regarded as a selfadjoint operator in ${}^{T}(L^2(\Omega) \times \mathbb{R})$ with the domain ${}^{T}(H^2 \cap H^1_0(\Omega) \times \mathbb{R})$. The associated sesqui-linear form $\mathfrak{A}=\mathfrak{A}(\ ,\)$ on ${}^{T}(H^1_0(\Omega) \times \mathbb{R})$ is given for $f={}^{T}(v,\kappa)$ and $g={}^{T}(w,\rho)$ that $\mathfrak{A}(f,g)=-a(\tilde{f},\tilde{g})$, where $a(v,w)=\int_{a} \{\nabla v \cdot \nabla w - pvw\}dx$ for $p=\lambda e^u$ and $\tilde{f}=f+(\kappa/\lambda)$ and $\tilde{g}=g+(\rho/\lambda)\in \hat{V}\equiv\{v\in H^1(\Omega) \mid (\partial/\partial\tau)v=0 \text{ on }\partial\Omega\}$ for a unit tangential vector τ . Thus $0\in\rho(d_h\Phi(h,s))$ is equivalent to $0\in$ $\rho(\hat{A}_p)$, where \hat{A}_p is the self-adjoint operator in $L^2(\Omega)$ associated with $a|_{\hat{r}\times\hat{r}}$. See [3] for details.

Putting $\sigma(\hat{A}_p) = \{\hat{\mu}_j(p)\}_{j=1}^{\infty}$ with $-\infty < \hat{\mu}_1(p) < \hat{\mu}_2(p) \leq \cdots$, we have $\hat{\mu}_1(p) < 0$ because constant functions belong to \hat{V} . Furthermore, $\hat{\mu}_2(p) > 0$ if s > 0 is small. We shall extend this consequence and show that $\hat{\mu}_2(p) > 0$ whenever $0 < s < 8\pi$. To this end, we first note that this fact holds when $\Omega = D \equiv \{|z| < 1\}$. In fact, in this case all solutions are parametrized by $s = \lambda \int_{a} e^u dx$ as $\{(\lambda^*(s), u^*(s)) | 0 < s < 8\pi\}$ with the property that $d_n \Phi(h^*(s), s)$ is invertible for $0 < s < 8\pi$, where $h^*(s) = {}^{r}(u^*(s), \lambda^*(s))$ ([4]). Hence $\mu_2(p^*(s)) > 0$ ($0 < s < 8\pi$) holds for $p^*(s) = \lambda^*(s)e^{u^*(s)}$.

Next, we note that $\hat{\mu}_2(p) > 0$ is equivalent to $\hat{\nu}_2(p) > 1$, where $\{\hat{\nu}_j(p)\}_{j=1}^{\infty}$ $(0 = \hat{\nu}_1(p) < \hat{\nu}_2(p) \leq \cdots \rightarrow +\infty)$ denotes the set of eigenvalues for

(EVP)
$$\varphi \in \hat{V}$$
 and $\int_{\Omega} \nabla \varphi \cdot \nabla \chi dx = \nu \int_{\Omega} \varphi \chi p dx$ for any $\chi \in \hat{V}$.

The first eigenfunction corresponding to $\hat{\nu}_1(p) = 0$ for (EVP) is a constant, so that we have $\hat{\nu}_2(p) = \text{Inf}\left\{ R(v) | v \in \hat{V}, \int_a vpdx = 0 \right\}$ by mini-max principle, where $R(v) = \int_a |\nabla v|^2 dx / \int_a v^2 p dx$. Minimizer φ of this variational problem is a second eigenfunction and hence is analytic in Ω and has two nodal domains Ω_{\pm} in Ω . At least one of Ω_{\pm} meets $\partial\Omega$. Without loss of generality, we suppose $\partial\Omega_- \cap \partial\Omega \neq \emptyset$ and put $\varphi_{\pm} = (\pm \varphi)^v 0$. Here we take generalized Schwarz' symmetrization $\varphi_-^* \in \hat{V}^*$ of φ_- ([1]) in use of the cannonical radial metric p^*ds^2 on D giving 1/2 Gaussian curvature and $s = \int_a pdx = \int_D p^*dx$, where $\hat{V}^* = \{v \in H^1(D) | (\partial/\partial \tau)v = 0$ on $\partial D\}$. Namely, $\varphi_-^*(x) = \sup \{\mu | x \in D_{\mu}^*\}$, where D_{μ}^{*} is the concentric disc in D such that $\int_{D_{\mu}^{*}} p^{*} dx = \int_{D_{\mu}} p dx$ for $D_{\mu} = \{x | \varphi_{-}(x) < \mu\}$. Then, we have $\int_{0} |\nabla \varphi_{-}|^{2} dx \ge \int_{D} |\nabla \varphi_{-}^{*}|^{2} dx$ by $\varphi_{-}|_{\partial \theta} = 0$ as well as $\int_{0}^{a} \varphi_{-} p dx = \int_{D} \varphi_{-}^{*} p^{*} dx$ and $\int_{0}^{a} \varphi_{-}^{2} p dx = \int_{D} \varphi_{-}^{*2} p^{*} dx$ ([1]). On the other hand, for φ_{+} we take $\varphi_{+*} \in \hat{V}^{*}$ as $\varphi_{+*}(x) = \inf\{\mu | x \in A_{\mu}^{*}\}$, where A_{μ}^{*} is the concentric annulus in D such that $\partial D \subset \partial A_{\mu}^{*}$ and $\int_{A_{\mu}} p^{*} dx = \int_{A_{\mu}} p dx$ for $A_{\mu} = \{x | \varphi_{+}(x) > \mu\}$. Then, similar properties hold for this rearrangement¹). That is, $\int_{0}^{a} \varphi_{+} p dx = \int_{D} \varphi_{+*} p^{*} dx$, $\int_{0}^{a} \varphi_{-}^{2} p dx = \int_{D} \varphi_{+*}^{2} p^{*} dx$ and $\int_{0} |\nabla \varphi_{+}|^{2} dx \ge \int_{D} |\nabla \varphi_{+*}|^{2} dx$. Furthermore, $\operatorname{supp} \varphi_{-}^{*} \cap \operatorname{supp} \varphi_{+*}$ is just a circle so that we have for $\varphi^{*} = \varphi_{+*} - \varphi_{-}^{*} \in \hat{V}^{*}$ that $\int_{D} \varphi^{*} p^{*} dx = 0$, $\int_{D} \varphi^{*2} p^{*} dx = \int_{0}^{a} \varphi_{-}^{2} p dx$ and $\int_{D} |\nabla \varphi^{*2}| dx \le \int_{0} |\nabla \varphi|^{2} dx$ and hence we obtain $\nu_{2}(p) \ge \nu_{2}(p^{*}) = \operatorname{Inf} \{R^{*}(v) | v \in \hat{V}^{*}, \int_{D} v p^{*} dx = 0\}$, where $R^{*}(v) = \int_{D} |\nabla v|^{2} dx / \int_{D} v^{2} p^{*} dx$. However $p^{*} = \lambda^{*}(s) e^{u^{*}(s)}$, where $h^{*}(s) =^{T}(u^{*}(s), \lambda^{*}(s))$ is the radial solution of (1.1) for $\Omega = D$ with $s = \int_{0}^{a} p^{*} dx$, so that $\nu_{2}(p^{*}) > 1$.

References

- Bandle, C.: Isoperimetric Inequalities and Applications. Pitman, Boston, London, Melbourne (1980).
- [2] Moseley, J. L.: Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal., 14, 719-735 (1983).
- [3] Nagasaki, K. and Suzuki, T.: On a nonlinear eigenvalue problem. Recent Topics in Nonlinear PDE III (eds. Masuda, K. and Suzuki, T.). Kinokuniya, North-Holland, Tokyo, Amsterdam, pp. 185-218 (1987).
- [4] Suzuki, T. and Nagasaki, K.: On the nonlinear eigenvalue problem $\Delta u + \lambda e^u = 0$ (to appear in Trans. AMS).
- [5] Wente, H.: Counter example to a conjecture of H. Hopf. Pacific J. Math., 121, 193-244 (1986).
- [6] Weston, V. H.: On the asymptotic solution of a partial differential equation with an exponential nonlinearity. SIAM J. Math. Anal., 9, 1030-1053 (1978).