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1. Introduction. In a rigorous treatment of quantum mechanics
it is basically important to consider the problem" Is a quantum Hamiltonian
seli-adjoint? In the present paper we state several theorems on the essen-
tial sel-adjointness o pseudo-differential operators with Weyl symbols.
Applying the theorems we can show the essential self-adjointness o Weyl
quantized Hamiltonians.

In [8], M. A. Shubin gives a proo of essential sel-adjointness o
pseudo-differential operators by using a global hypo-elliptic estimate.
However, we can obtain the theorems without use o hypo-ellipticity. In
order to get our main result we use an algebra o spatially inhomogeneous
pseudo-differential operators, which are studied, or example, in [1], [3]
and [4].

We do not give detailed proofs o the theorems here. The detailed
proofs will be published elsewhere.

2. An algebra of pseudo.differential operators. We givehere some
results on pseudo-differential operators. The results have already been
obtained undamentally by Iwasaki [3] and Kumano-go and Taniguchi [4],
however, we have to reproduce some o their results in a suitable orm to
our purpose.

Definition 2.1 (see [3] and [4]). A smooth unction (x, ) on RR
is clled basic weight unction ff

(1) l2(x+y, )Co(y}2(x, ),
(2) ()(,,(), )<C(x,_)-+ for any and fl,

where r and are non-negative constants with 01, (y}=(l+[y)/ and

()(x,)= i 3 3 2(x,)

Definition 2.2 (see [3] and [4]). Let m, and p be real numbers with
03pl. We say that a smooth unction p(x,) belongs to the class
S,,, if p(x, ) satisfies

Ip(x, )]C(x, y)-,’+ or any and ft.
Let denote the Schwartz space o rapidly decreasing unctions on R.

For p(x, ) e S,, we define operators p(X, D) and p’(X, D) on by

p(X, D)u(x)= (2z)- [ e’p(x, )()d,
* Department of Mathematics, College. of General Education, Osaka University.

**) Department of Mathematics, Faculty of Science, Osaka. University.



No. 4] Self-adjoint Pseudo-differential Operators 95

pw(X’ D)u(x)-- (2)- e(-)’P( x- )u(y)dyd.
Then we have the following theorems.
Theorem 2.1. ( i ) Operators p(X, D) and p(X, D) are continuous

from to . If p(x, ) is real-valued, then the operator p(X, D) is sym-
metric on (p(X, D)u, v)= (u, p(X, D)v), where (., .) denotes the inner
product on L(R).

(ii) If p(x, ) e S,,,, then we have

IlpW(X, D)ullC (pl liull,
where ]I’ll denotes the norm on L(R),

[pl,= max sup {[p(),
lal+llt (x,)

and is a suciently large integer.
Theorem 2.2. (i) If p(x, ) eS, (k:1,2), then there exists a

.+ such thatsymbol p(x, ) e ,,
p(X, D)p2(X, D)u(x)--p(X, D)u(x)

and we have the asynptotic expansion

p(x,) p(x, ),
j=0

where

(ii)
that

for L (_

I p(x, ) e S,p,, then there exists a symbol (x, ) S,p, such

p(X, D)u(x)= $(X, D)u(x) for u e ,
and we have the asymptotic expansion

(x,) p(x, ),
j=0

where

(-) 1--!-p(")(x, ).p(x, )= . !
3. Essential self.adjointness og pseudo.differential operators. In

this section we assume that m0, 0__1 and we consider a real valued
symbol p(x, ) in S,,,. We work in the Hilbert space L(R).

Theorem ..1. I p(x, ) satisfies
(3.1) [(")(x,)[_C.Ip(x,)+il(x,)-"/

for any and fl, then the operator p’(X, D) is essentially self-ad]oint on
A sketch of the proof. We have only to show that the sets {p(X, D)

___i/}() are dense in L(R) or some positive constant /:/:0 (see [7]). We
which satisfyprove this by constructing the symbols q, (x, ) e S.,.

(3.2) {p(X,D)+_i/}.q;(X,D)u(x)=u(x)+r;(X,D)u(x) for u e
where r;(X, D) are bounded operators with

(3.3) llr;(X, D)u I_C lull for u e .
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We can construct the q;(x, ) by using the theorems in Section 2. It ollows
from (3.2) and (3.3) that p(X,D)+il}.q;(X,D) are bounded operators on
L(R) with bounded inverses. Since q;(X, D) are continuous rom to ,
we can see that the sets {p(X, D)+_ i/}() are dense in L(R) or sufficiently
lrge/ 0. Q.E.D.

The following theorem is an easy consequence of Theorem 3.1.
Theorem 3.2. If p(x, ) satisfies

p(x, )+z>_Co(X,)
for some constants to and coO, then the operator p’(X, D) is essentially
self-ad]oint on .

By a similar method to the proo of Theorem 3.1, we can obtain the
following result.

Theorem 3.3. Assume that p(x, ) is non-negative and satisfies (3.1).
If a smooth function V(x) is real valued and satisfies that V(x)+/_l,
IV(x)lC(x} and

IY(x) I< co(y(x) +z}
for some constants l, and M, then the operator p(X, D)+ V(x) is essentially
self-ad]oint on 3.

It is desirable to show that the operators are essentially self-adjoint
on C(R). To do so, we need a lemma.

Lemma 3.1. There exist positive constants C and s such that
lip(X, D)u]]<_ C ]]u]l., for u e 3,

where []u]],= (D}(x}u[]
Using this lemma we have
Theorem .4. If p(X,D) is essentially self-ad]oint on , then

p(X, D) is essentially self-ad]oint on C(R).
From this theorem we can deduce the variants of Theorems 3.1, 3.2

and 3.3.
Examples (see [2], [5] and [6]). Let a(x)= (a(x),...,a(x)) satisfy

13"a(x)l_C, or any a:/:0. Put p(x,)={]-a(x)]+,}/ (,0). Then
taking 2(x, #)= {]--a(x)[+ 1}/ we can see that the symbol p(x, ) belongs
to S.1,0 and satisfies the assumption o Theorem 3.2 Hence p.(X, D) is
essentially self-adjoint on . Thus, by Theorem 3.4, pW(X, D) is essentially
self-adjoint on C(R). Furthermore, if V(x) is a smooth unction satisfy-
ing the assumption of Theorem 3.3, then pW(X, D)+ V(x) is essentially self-
adjoint on 3, and consequently essentially sel-adjoint on Cy(R).
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