27. On the Existence of the Poles of the Scattering Matrix for Several Convex Bodies

By Mitsuru Ikawa
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1988)

1. Introduction. Let \mathcal{O} be an open bounded set in \boldsymbol{R}^{3} with smooth boundary Γ. We set

$$
\Omega=\boldsymbol{R}^{3}-\overline{\mathcal{O}},
$$

and suppose that Ω is connected. Consider the following acoustic problem

$$
\begin{cases}\square u(x, t)=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0 & \text { in } \Omega \times(-\infty, \infty) \tag{1.1}\\ B u(x, t)=0 & \text { on } \Gamma \times(-\infty, \infty) \\ u(x, 0)=f_{1}(x) & \\ \frac{\partial u}{\partial t}(x, 0)=f_{2}(x) & \end{cases}
$$

where $\Delta=\sum_{j=1}^{3} \partial^{2} / \partial x_{j}^{2}$. As boundary operator B we shall consider the following two operators,

$$
B_{D}=1 \quad \text { (Dirichlet condition) }
$$

and

$$
B_{N}=\sum_{j=1}^{3} n_{j}(x) \partial / \partial x_{j} \quad \text { (Neumann condition) }
$$

where $n(x)=\left(n_{1}(x), n_{2}(x), n_{3}(x)\right)$ denotes the unit outer normal of Γ at x.
Denote by $\mathcal{S}_{\dagger}(z), \dagger=D, N$, the scattering matrix for the scatterer \mathcal{O} under the boundary condition $B_{+} u=0$ (for the definition, see [6]). It is well known that $\mathcal{S}_{\mathrm{f}}(z)$ is an $\mathcal{L}\left(L^{2}\left(S^{2}\right)\right.$)-valued meromorphic function in the whole complex domain C.

As to the modified Lax and Phillips conjecture, ${ }^{11}$ that is, when \mathcal{O} is trapping, there exists $\alpha>0$ such that a slub domain $\{z ; \operatorname{Im} z<\alpha\}$ contains an infinite number of poles of the scattering matrix, we have a few examples. Especially for the Dirichlet boundary condition an obstacle consisting of two disjoint convex bodies is the only example ($[2,3]$). The purpose of this note is to study the modified Lax and Phillips conjecture in the case that \mathcal{O} consists of several disjoint strictly convex bodies. Our theorem gives a sufficient condition for the existence of such α, which is stated by means of an analytic function defined by using purely geometric informations of Ω.

This work was done during my stay at Massachusetts Institute of Technology. I would like to express my sincere gratitude to Professor Melrose for the invitation and stimulating conversations.

[^0]2. Statement of theorems. Let $\mathcal{O}_{j}, j=1,2, \cdots, j$ be open bounded sets in \boldsymbol{R}^{3} with smooth boundary Γ_{j}. We assume the following:
(H.1) Every \mathcal{O}_{j} is strictly convex, that is, the Gaussian curvature of Γ_{j} is positive everywhere.
(H.2) For all $\left\{j_{1}, j_{2}, j_{3}\right\} \in\{1,2, \cdots, J\}^{3}$ such that $j_{l} \neq j_{h}$ if $l \neq h$, the convex hull of $\overline{\mathcal{O}}_{j_{1}}$ and $\overline{\mathcal{O}}_{j_{2}}$ has no intersection with $\overline{\mathcal{O}}_{j_{3}}$.

We set

$$
\begin{equation*}
\mathcal{O}=\bigcup_{j=1}^{J} \mathcal{O}_{j} . \tag{2.1}
\end{equation*}
$$

Let γ be a periodic ray in Ω. We shall use the following notations:
d_{r} : the length of γ,
T_{r} : the primitive period of γ,
i_{r} : the number of the reflecting points of γ,
P_{r} : the Poincare map of γ.
Concerning the periodic rays in Ω, we have
$\#\left\{\gamma:\right.$ periodic ray in Ω such that $\left.d_{r}<r\right\} \leq e^{a_{0} r}$,
$\left|I-P_{r}\right| \geq e^{2 a_{1} d_{r}}$,

$$
\begin{equation*}
\left|I-P_{r}\right| \geq e^{2 a_{1} a_{r}}, \tag{2.2}
\end{equation*}
$$

where a_{0} and a_{1} are positive constants determined by \mathcal{O}, and we denote by $|A|$ the determinant of matrix A.

Define functions $F_{+}(\mu), \dagger=D, N$, by

$$
\begin{equation*}
F_{\dagger}(\mu)=\sum_{r}(-1)^{a_{+} i_{r}} T_{r}\left|I-P_{r}\right|^{-1 / 2} e^{-\mu d_{r}}, \quad a_{D}=1, \quad a_{N}=0 \tag{2.4}
\end{equation*}
$$

where the summation is taken over all the periodic rays in Ω. Note that it follows from (2.2) and (2.3) that F_{D} and F_{N} are holomorphic in $\{\mu: \operatorname{Re} \mu$ $\left.>a_{0}-a_{1}\right\}$.

Theorem 1. Let \mathcal{O} be an obstacle given by (2.1) satisfying (H.1) and (H.2). If $F_{\dagger}, \dagger=D$ or N, cannot be prolonged analytically to an entire function, there exists $\alpha>0$ such that the scattering matrix $\mathcal{S}_{\dagger}(z)$ has infinitely many poles in $\{z ; \operatorname{Im} z<\alpha\}$.

Theorem 2. Let $\mathcal{O}_{1}, \mathcal{O}_{2}$ and $\widetilde{\mathcal{O}}_{3}$ be open sets in \boldsymbol{R}^{3} satisfying (H.1) and (H.2). If $\mathcal{O}_{3} \subset \tilde{\mathcal{O}}_{3}$, and the principal curvatures of $\Gamma_{3}=\partial \mathcal{O}_{3}$ are greater than κ everywhere of Γ_{3}, then F_{D} for $\mathcal{O}=\bigcup_{j=1}^{3} \mathcal{O}_{j}$ cannot be prolonged analytically to an entire function. Here κ is a positive constant depending on $\mathcal{O}_{1}, \mathcal{O}_{2}$ and $\widetilde{\mathcal{O}}_{3}$.

Remark. It is easy to show that F_{N} has a singularities on the real axis. Thus in the case of the Neumann condition, the modified Lax and Phillips conjecture holds for \mathcal{O} satisfying (H.1) and (H.2) ([5]).
3. On the proofs of theorems. In order to prove Theorem 1 we shall use the trace formula due to Bardos, Guillot and Ralston [1], and follow the argument in [5]. In the proof of the main estimate of the trace the following lemma is crucial.

Lemma 3. Let $\rho \in C_{0}^{\infty}(-2,2)$ such that $\rho \geq 0$ for all t and $\rho(t)=1$ for $t \in[-1,1]$. Suppose that F_{\dagger} cannot be prolonged analytically to an entire function. Then there exists a positive constant α_{0} such that for any large $\beta>0$ we can find sequences $\left\{l_{q}\right\}_{q=1}^{\infty}$ and $\left\{m_{q}\right\}_{q=1}^{\infty}$ with the following properties:
(i)

$$
l_{q} \longrightarrow \infty \quad \text { as } q \longrightarrow \infty .
$$

(ii)

$$
e^{\beta l_{q}} \leq m_{q} \leq e^{2 \beta l_{q}}
$$

(iii) $\left|\left\langle\boldsymbol{\rho}_{q}, \hat{F}_{+}\right\rangle_{\mathscr{(\boldsymbol { R } _ { + }) \times \mathscr { Q } ^ { \prime } (\boldsymbol { R } _ { + })}}\right| \geq e^{a_{1} l_{q}} \quad$ for all q,
where, \hat{F}_{+}is a distribution in $(0, \infty)$ given by

$$
\hat{F}_{\dagger}(t)=\sum_{r}(-1)^{a+i_{r}} T_{r}\left|I-P_{r}\right|^{-1 / 2} \delta\left(t-d_{r}\right)
$$

and $\rho_{q}(t)=\rho\left(m_{q}\left(t-l_{q}\right)\right)$.
In order to show Theorem 2 we shall make a rearrangement of the summation in (2.4), and use the results in [3, 4] on asymptotic behavior of phase functions and periodic rays in Ω.

References

[1] C. Bardos, J. C. Guillot, and J. Ralston: La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion. Comm. Partial Diff. Equ., 7, 905-958 (1982).
[2] C. Gérard: Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes. Univ. Paris-Sud (preprint).
[3] M. Ikawa: On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ., 23, 127-194 (1983).
[4] -: Decay of solutions of the wave equation in the exterior of several convex bodies (to appear in Ann. Inst. Fourier).
[5] --: On the poles of the scattering matrix for several strictly convex bodies (to appear).
[6] P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press (1967).
[7] R. Melrose: Singularities and energy decay in acoustical scattering. Duke Math. J., 46, 43-59 (1979).

[^0]: 1) The original one is given in [6, page 158], but \mathcal{O} considered in [4] is a counter example.
