8 Proc. Japan Acad., 64, Ser. A (1988) [Vol. 64(A),

3. On the First Eigenvalue of Some Quasilinear
Elliptic Equations

By Mitsuharu OTANI®) and Toshiaki TESHIMA*®

(Communicated by Kdsaku YO0SIDA, M. J. A., Jan, 12, 1988)

1. Introduction. Let 2 be a bounded domain in RY¥ with smooth
boundary 92. For given pe (1, + ), a € L5(Q)={fe L*(2); f(x)>0 a.e.
zeRtand be Ly(@D)={fe L~(2); f*(-)=max (f(-), 0)x0}, we consider the
following eigenvalue problem:

), {(1) — 4u(@) + a(@)|u P w(x) = 2b@)|ul>*u(x), v e, 2>0,
2 u@x)=0, x<cof,
where 4u(x)=div (FuP-*Fu(x)).

The main purpose of this paper is to show that there exists a positive
number ,, the first eigenvalue, such that (¥), admits a positive solution if
and only if =2, and that 2, is simple, i.e., solutions of (), forms a
one dimensional subspace of Wi?(2). Here u is said to be a solution of
(E), if u belongs to Wp?(2) and satisfies (1) in the sense of distribution.
For the case where a=0 and b=1, the simplicity of 4, has been shown
under some additional assumptions. When N=1, it is shown in [2] that
all eigenvalues 4, (ke N) are simple and that all eigenfunctions u, as-
sociated with 2, have (k—1) isolated zeros in 2. If £ is a ball, DeThélin
[6] showed the simplicity of 4, in the class of radially symmetric solutions
by using the theory of rearrangement. Recently, Sakaguchi [4] made an
argument based on a strong maximum principle to prove that i, is simple
provided that 02 is connected. Our method of proof is quite different
from those in [2], [4], [5], and requires neither the connectedness of 992
nor the positivity of b(-).

We define 2,=2,(a, b) by
(3) 1/2,=sup {R() :=BW)[A(); ve W :=Wp?(2)\{0}},

where A(v):L (V@) P+ a(@) @) P)dz and B(v):fg b(x)|w(@)Pde. Then

our main result is stated as follows :

Theorem 1. Eigenvalue problem (E), has o nontrivial nonnegative
solution w if and only if 2z=2,and J,(w) :=A(w)—2,B(u)=0. Furthermore,
the eigenvalue 2, is simple, more precisely, the set of all solutions of (E),,
consists of {tu,; t € R'}, where u, is a solution of (E),, such that u,e C°(2)
for some 6 € (0, 1) and u,(x) >0 for all x € Q.

2. Some lemmas. To prove Theorem 1, we here prepare some
lemmas.
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Lemma 2. Let u be a solution of (E),, Then ue C*(2) for some
0€(0,1). Furthermore, if u=0 in 2, then u>0 in Q.

Proof. The very same verification as for Theorem 2 of [3] assures
that ue L=(2). Then above assertions follows from Proposition 3.7 of
[6] and Theorem 1.1 of [7]. Q.E.D.

Lemma 3. Let F(x, u): 2X R'—R' be measurable in x and monotone
nondecreasing in u. Let u,, u, e W-?(2) satisfy
(4) —du @)+ F(x, uy(2) < — d,u(x)+ F(, uy(x))

in W-»7(Q), p'=p/(p—1).
Then u,<u, on 02 implies u, <u, in 9.

Proof. Put w(x)=max (u,(x)—u,(x), 0). Then, by Corollary A.6 of
[1], we Wi?(2). Multiplying (4) by w and using the monotonicity of
F(x, -), we find that the integration of (Fu,P-u,—|Fu,lP-*Pu)Vu,—FVu,)
over D={x € 2; u,(x)=u,(x)} is non-positive. Since —4, is strictly mono-
tone, we deduce that Fu,=Vwu, in D, whence follows Fw=0, i.e., u,<u,
in Q. Q.E.D.

Lemma 4. Let we Wi2(2)NCHD) satisfy
(5) {-—A,,u(x)+Mu”"(x)gO m W-b*(2), M=0,

u>0 n 9, u=0 on 992.
Then the outer normal derivative oulon of u is strictly negative on 0%.

Proof. For every z,c 0 and a sufficiently small R>0, there exists
ye R such that B,,(y)CQ and z,€0dB,,(y)N32, where B,()={xcR";
[z—a]|<p}. Set
(6) v(@)=a(BR—7ry—aR’, r=|x—y|, a>0.

Then it is easy to see that « and R (resp. §) may be chosen small (resp.
large) enough so that —4,0+Mv*"'<0 in Q,=B,,(¥)\BL(y) and v<u on
0Qz. Hence, from Lemma 3, we deduce that v(x) —v(x,) <u(x) —u(x,) for all
x € 5, whence follows the assertion. (See Lemma A.3 of [4].) Q.E.D.

3. Proof of Theorem 1. The proof is devided into five steps.

(i) 0<4<+oco: Suppose that B(u)<0 for all ue Wy?(2). Then,
since there exist v, e Wi?(2) such that »,>0 and v,—b*=max (b, 0) in
L*(), we obtain B(b*)<0, which gives the contradiction b*=0. Hence
there exists an element u, ¢ Wi?(Q) satisfying B(u,) >0. Thus 0<2,<1/R(u,).
Furthermore, by multiplying (1) by % and using Holder’s inequality, we
can obtain the lower bound of ,: 4,=(C,|b*|.-|2.,|9?/9)* for all ¢ such
that C,:=sup {|u|./|Fe|,; we W}<+4oco, where 2,={x e 2; b(x)>0}.

(i) (E), has no nontrivial solution for 20, 1,): Let u be a solution
of (E),. Then multiplication of (1) by u gives R(u)=1/2>1/2,, which
contradicts (3).

(i) wu is a solution of (E), if and only if J,(w)=0: The “only if”
part can be proved as in step (ii). Let J,(u)=0, then (3) implies J, (w)
=min {J,(u); we W}=0. Hence Fréchet derivative of J, at u vanishes,
i.e., u is a solution of (E),. Moreover, since J,(w)=J,(u|) and Wp?(f) is
compactly embedded in L?(2), there exists a non-negative function u, such
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that J,(#,)=0. Then, by Lemma 2, (E), has always a positive solution
u, € C9(D).

(iv) 2, is simple: Let u and v be positive solutions of (E),. Then
M(t, x)=max (u(x), tv(x)) and m(t, x)=min (u(x), tv(x)) belong to Wi?(Q)
and satisfy J,(M(t, -)+J,(m(E, -))=J,(w+J,(tv)=0 (see [1]). Hence,
by ), J,(ME, -)=J,(m(t, -))=0. Then M(t, x) is a solution of (E),,
and by Lemma 2 M(t, -)e C*°(2) for all t=0. For any x,c £, set ¢,
=u(x,)/v(x,) >0. Since u(x,-+he)—ulr,)<M(, x,+he)—M(t,, x,) for all
unit vectors e, dividing this inequality by 2>0 or k<0, and letting %
—+0, we find Vu(x)=V,M({, x,), and similarly V M, x)=tF(x,).
Thus we obtain V (u/v)(x,)=0, i.e., u(x)/v(x)=Const. in Q.

(v) (F); has no positive solution for 2>2,: Let u and v be positive
solutions of (E), and (E), respectively. By virtue of Lemmas 2 and 4,
% and v may be choosen so that #<v in 2. For the time being, assume
b=0. Then —A4u+au?"'=2,bu?"'<2,bv?"'=—4,(v)+a@v)*~!, where y=
@,/A)®- <1, Therefore Lemma 3 assures that u<yv in 2. Repeating
this procedure, we deduce that u<s"v in Q for all n € NV, whence follows
#=0. This is a contradiction. Let b*=max (b, 0) and b- =max (—b, 0).
Then above results say that the equation —4,w+{a+20"} w?'=pb*w?"!
has a nontrivial positive solution w if and only if p=py =2,(a+2b-,0")

and I,,l(w)=A(w)—|—2J b-@wpda—p, I b(@|wpdv=min{l,(2); ze W}=0.

Since v is a positive solution of the above equation with =2, we deduce
that x,=2 and I,(v)=I,(v)=J,(v)=min{J(2); ze€ W}=0. However, J,(«)
=J,(u)—(A—2,)B(u)<0. This is a contradiction. Q.E.D.

4. Remark. By the same argument as in [4] with obvious modifica-
tions, we can show the following result: “Let a=0, =0 and be C°(Q)
for some 6 € (0, 1), and let 2 be convex and b(-) be concave. Then, every
positive solution u of (E),, is log-concave, i.e., log u is a concave function.”
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