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3 On the First Eigenvalue of Some Quasilinear
Elliptic Equations

By Mitsuharu OTAN*) and Toshiaki TESHMA**

(Communicated by Ksaku YOSD., M. J.., Jan. 12, 1988)

1. Introduction. Let [2 be a bounded domain in R with smooth
boundary tf. For given p e (1, -t-oo), a e L(D)={f e L(tg) f(x)0 a.e.
x e D} nd b e L(D)--{f e L(tg) f+(.)=mx (f(.), 0)0}, we consider the
ollowing eigenvalue problem"

(E), ((1) --zlu(x)-Fa(x)lulp-u(x)--b(x)[u[’-u(x), x e ff, ,0,
((2) u(x)=O, x e

where z/u(x)=div (IVul-Vu(x)).
The main purpose of this paper is to show that there exists a positive

number 2, the first eigenvalue, such that (E) admits a positive solution if
and only if = and that , is simple, i.e., solutions of (E), forms a
one dimensional subspace of W’(/2). Here u is. said to be a solution of
(E), if u belongs to W,(tg) and satisfies (1)in the sense of distribution.
For the case where a=_0 and b----l, the simplicity o 1 has. been shown
under some additional assumptions. When N--1, it is shown in [2] that
all eigenvalues (k e N) are simple and that all eigenfunctions u as-
sociated with , have (k--1) isolated zeros in 9. If t2 is a ball, DeThlin
[5] showed the simplicity of in the class of radially symmetric solutions
by using the theory of rearrangement. Recently, Sakaguchi [4] made an
argument based on a strong maximum principle to prove that 2 is simple
provided that 3/2 is connected. Our method of proof is quite different
rom those in [2], [4], [5], and requires neither the connectedness of
nor the positivity of b(.).

We define 1=21(a, b) by
( 3 ) 1/l=sup {R(v)’=B(v)/A(v) v e W’= W,P(/2)\{0}},
where A(v)= ;{lgu(x)[+a(x)lu(x)l}dx and B(v)= b(x)lu(x)ldx. Then

our main result is stated as f.oll.ows
Theorem 1. Eigenvalue problem (E) has a nontrivial nonnegative

so.lution u if and only if -- and Jl(u)"=A(u)--2lB(u)=O. Furthermore,
the eigenvalue is simple, more precisely, the set of all solutions o.f (E),
consists of {tu t e R1}, where u is a solution of (E) such that ul e C’()
for some t e (0, 1) and ul(x)0 for all x e

2. Some lemmaso To prove Theorem 1, we here prepare some
lemmas.
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Lemma Z. Let u be a solution of (E). Then u e C,(9) for some
0 e (0, 1). Furthermore, if u_O in 9, then uO in

Pro.o,f. The very same verification as for Theorem 2 of [3] assures
that u e L(ff). Then above assertions follows from Proposition 3.7 of
[6] and Theorem 1.1 of [7]. Q.E.D.

Lemma 3. Let F(x, u)" 2R-+R be measurable in x and monotone
nondecreasing in u. Let u, u e W,(9) satisfy
( 4 ) u(x)+F(x, u(x)) <= zlu(x)+F(x, u(x))

in W-,’(t), p’=p/(p-1).
Then u<=u on [2 implies u<=u in 9.

Proof. Put w(x) max (u(x)--u(x), 0). Then, by Corollary A.6
[1], we W.,(tg). Multiplying (4) by w and using the monotonicity
F(x, .), we find that the integration of (lgul’-Wu-Igul-Wu)(gu-gu)
over D= {x e tg; u(x).>=u(x)} is non-positive. Since -z/, is strictly mon.o-
tone, we deduce that gu=P’u in D, whence ollows P’w=0, i.e.,
in /2. Q.E.D.

Lemma 4. Let u e W’(/2) C(P) satisfy

[--lu(x)+MuP-l(x)>_O in W-l,’(ff),(5)
[u0 in 9, u=0 on

Then the outer normal derivative 8u/Sn of u is strictly negative on
Proof. For every x0 e 8f2 and a sufficiently small R0, there exists

y e f2 such that BfR(y)cf2 and Xo e 3BfR(y) 3ff, where Bp(z)--{x e R
]z-xl<p}. Set
(6) v(x) a(3R-r) R, r= x y l, a O.
Then it is easy to see that a and R (resp. ) may be chosen small (resp.
large) enough so that --,v+Mv-<=O in 9=B(y)\B(y) and v<=u on

9. Hence, from Lemma 3, we deduce that v(x)- v(xo) u(x)--U(Xo) or all
x e 2, whence follows the assertion. (See Lemma A.3 of [4].) Q.E.D.

:. Proof of Theorem 1. The proof is devided into five steps.
( ) 0+" Suppose that B(u)_<__O 2or all ue W’(/2). Then,

since there exist )n e Wlo’p(9) such that v>=0 and v--b/--max (b, 0) in
L(t), we obtain B(b+)<=O, which gives the contradiction b/0. Hence
there exists an element u0 e W’(9) satisfying B(uo) 0. Thus0l/R(uo).
Furthermore, by multiplying (1) by u and using tISlder’s inequality, we
can obtain the lower bound o.f " (Clb/l]9/l(-)/)- or all q such
that Cq "=sup {lu[/Igu] u e W} + c where 9. {x e 9 b(x)

(ii) (E) has no nontrivial solution for e [0, )" Let u be a solution
of (E). Then multiplication o (1) by u gives R(u)=l/2l/, which
contradicts (3).

(iii) u is a solution o.f (E) if and o.nly if J(u)=0" The "only i"
part can be proved as in step (ii). Let J(u)=0, then (3) implies J(u)
=min{J(u) u e W}=0. Hence Frchet derivative of J, t u vanishes,
i.e., u is a solution o (E). Moreover, since J(u)=J(lu[) and W’(/2)is
compactly embedded in L’(9), there exists a non-negative unction u such
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that J,(u).--O. Then, by Lemma 2, (E) has always a positive solution
u, e C"(9).

(iv) 2, is simple" Let u and v be positive solutions of (E),. Then
M(t, x)=max (u(x), tv(x)) and re(t, x)=min (u(x), tv(x)) belong to W,())
and satisfy J,(M(t, .))+J,(m(t, .))=J,(u)+J,(tv)=O (see [1]). Hence,
by (3), J,(M(t, .))=J,(m(t, .))=0. Then M(t, x) is a solution of (E),,
and by Lemma 2 M(t, .)eC.(D) for all t>0. For any x0eD, set to
=U(Xo)/V(Xo)>O. Since U(Xo+he)--U(Xo)_M(to, Xo+he)--M(to, Xo) for all
unit vectors e, dividing this inequality by h>0 or h<0, and letting h
--,_+0, we find gU(Xo)=gM(to, Xo), and similarly gM(to, Xo)=to’(Xo).
Thus we obtain P’(u/v)(Xo)=O, i.e., u(x)/v(x)=Const, in D.

(v) (E) has no positive solution for" Let u and v be positive
solutions of (E), and (E) respectively. By virtue of Lemmas 2 and 4,
u and v may be choosen so that u<=v in 2. For the time being, assume
b0. Then --Au+au-=bu-<=bv-=--A(v)+a(v)-, where
(/)/(-)1. Therefore Lemma 3 assures that u<=v in 9. Repeating
this procedure, we deduce that U<=nv in /2 for all n e N, whence follows
u0. This is a contradiction. Let b +=max(b, 0) and b-=max (--b, 0).
Then above resul-ts say that the equation --A,w+{a+b-} w-=zb/w-has a nontrivial positive solution w if and only if g----/=(a+b-, b /)

and I,l(w)=A(w)+2fb-(x)lwlpdx-[l b/(x)lwlpdx=min{I,(z) z e W}=0.

Since v is a positive solution of the above equation with/=, we deduce
that /= and I,(v)=L(v)=J(v)=min (J(z) z e W}=0. However, J(u)
=J,(u)--(--)B(u)O. This is a contradiction. Q.E.D.

4. Remark. By the same argument as in [4] with obvious modifica-
tions, we can show the following result" "Let a----O, b>=O and b e C(9)
for some 0 e (0, 1), and let be convex and b(.) be concave. Then, every
positive solution u of (E), is log-concave, i.e., log u is a concave function."
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