23. A Problem on Quadratic Fields

By Takashi Ono

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., March 14, 1988)

Let k be a quadratic field, Δ_k the discriminant and M_k the Minkowski constant:

$$M_k = egin{cases} rac{1}{2} \sqrt{\mathcal{J}_k} & ext{if } k ext{ is real,} \ rac{2}{\pi} \sqrt{-\mathcal{J}_k} & ext{if } k ext{ is imaginary.} \end{cases}$$

Consider the finite set of prime numbers

 $\Pi_k = \{p, \text{ rational prime}; p \leq M_k\}.$

There are exactly 8 fields for which $\Pi_k = \phi$. They make up an exceptional family

$$E_{s} = \{k = Q(\sqrt{m}); m = -1, \pm 2, \pm 3, 5, -7, 13\}$$

For any k, let χ_k denote the Kronecker character. The character splits Π_k into 3 disjoint parts:

$$\Pi_k^0 = \{p \in \Pi_k; \chi_k(p) = 0\},\ \Pi_k^- = \{p \in \Pi_k; \chi_k(p) = -1\},\ \Pi_k^+ = \{p \in \Pi_k; \chi_k(p) = -1\},\ \Pi_k^+ = \{p \in \Pi_k; \chi_k(p) = +1\}.$$
 Consider, next, the 3 families of fields:

$$K^{0} = \{k ; \Pi_{k} = \Pi_{k}^{0}\},\$$

$$K^{-} = \{k ; \Pi_{k} = \Pi_{k}^{-}\},\$$

$$K^{+} = \{k ; \Pi_{k} = \Pi_{k}^{+}\}.$$

The problem is to determine explicitly the 3 families. Since E_s is common to all 3 families, it is enough to determine $K^{\circ}-E_s$, $K^{-}-E_s$, $K^{+}-E_s$, respectively.

(I) $K^0 - E_s$. This is the easiest part of the problem and one settles it completely. Namely,

(1) $K^0 - E_8 = \{k = Q(\sqrt{m}); m = -5, \pm 6, 7, 10, 15, \pm 30\}.$

Proof of (1). Let p_n denote the *n* th prime. Using the well-known Chebyshev's inequality, $p_{n+1} < 2p_n$, $n \ge 1$, one proves by induction that

(2)
$$p_{n+1}^2 < \frac{1}{4} p_1 p_2 \cdots p_n$$
 when $n \ge 5$.

For any $k \in K^0 - E_s$, choose *n* so that $p_n \leq M_k < p_{n+1}$. Since $p_n \leq M_k$, we have $p_1 \cdots p_n | \mathcal{A}_k$ by definition of K^0 , and so

$$p_{n+1}^2 {>} M_k^2 {\geq} rac{1}{4} \left| arLambda_k
ight| {\geq} rac{1}{4} p_1 {\cdots} p_n.$$

Hence, by (2), $n \leq 4$ and $M_k < p_5 = 11$, from which one easily verifies (1). (II) $K^- - E_8$. This part of the problem is almost settled by H. M. Stark [3] and M.-G. Leu [2]. To be more precise, if k is imaginary, it is easy to see that

(3) $k \in K^- \iff h_k = 1 \ (h_k \text{ denotes the class number of } k)^{*}$.

Therefore [3] is good enough to handle the imaginary part of K^--E_8 . As for the real part, [2] determined fields with at most one exception. The list of fields is (conjecturally) as follows:

(4)
$$K^- - E_s = \{k = Q(\sqrt{m}); m = -11, -19, -43, -67, -163, 21, 29, 53, 77, 173, 293, 437\}.$$

(III) $K^+ - E_s$. This part of the problem is closely connected with the problem on the least quadratic non-residue. At present, I do not have a proof for the following (conjectural) list hinted by the machine computation:

(5) $K^+ - E_8 = \{k = Q(\sqrt{m}); m = -15, -23, -47, -71, -119, 17, 33, 73, 97\}.$

Remark. Needless to say that any number field k has the Minkowski constant M_k . Hence one can create the similar problem for k's which are not quadratic by using the 'character' belonging to k.

References

- H. K. Kim, M.-G. Leu, and T. Ono: On two conjectures on real quadratic fields. Proc. Japan Acad., 63A, 222-224 (1987).
- [2] M.-G. Leu: On a conjecture of Ono on real quadratic fields. ibid., 63A, 323-326 (1987).
- [3] H. M. Stark: A complete determination of the complex quadratic fields of classnumber one. Michigan Math. J., 14, 1-27 (1967).