23. A Problem on Quadratic Fields

By Takashi Ono
Department of Mathematics, The Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., March 14, 1988)

Let k be a quadratic field, Δ_{k} the discriminant and M_{k} the Minkowski constant:

$$
M_{k}= \begin{cases}\frac{1}{2} \sqrt{\Delta_{k}} & \text { if } k \text { is real } \\ \frac{2}{\pi} \sqrt{-\Delta_{k}} & \text { if } k \text { is imaginary }\end{cases}
$$

Consider the finite set of prime numbers

$$
\Pi_{k}=\left\{p \text {, rational prime ; } p \leqq M_{k}\right\} .
$$

There are exactly 8 fields for which $\Pi_{k}=\phi$. They make up an exceptional family

$$
E_{8}=\{k=\boldsymbol{Q}(\sqrt{m}) ; m=-1, \pm 2, \pm 3,5,-7,13\} .
$$

For any k, let χ_{k} denote the Kronecker character. The character splits Π_{k} into 3 disjoint parts :

$$
\begin{aligned}
& \Pi_{k}^{0}=\left\{p \in \Pi_{k} ; \chi_{k}(p)=0\right\}, \\
& \Pi_{k}^{-}=\left\{p \in \Pi_{k} ; \chi_{k}(p)=-1\right\}, \\
& \Pi_{k}^{+}=\left\{p \in \Pi_{k} ; \chi_{k}(p)=+1\right\} .
\end{aligned}
$$

Consider, next, the 3 families of fields:

$$
\begin{aligned}
K^{0} & =\left\{k ; \Pi_{k}=\Pi_{k}^{0}\right\}, \\
K^{-} & =\left\{k ; \Pi_{k}=\Pi_{k}^{-}\right\}, \\
K^{+} & =\left\{k ; \Pi_{k}=\Pi_{k}^{+}\right\} .
\end{aligned}
$$

The problem is to determine explicitly the 3 families. Since E_{8} is common to all 3 families, it is enough to determine $K^{0}-E_{8}, K^{-}-E_{8}, K^{+}-E_{8}$, respectively.
(I) $K^{0}-E_{8}$. This is the easiest part of the problem and one settles it completely. Namely,
(1) $\quad K^{0}-E_{8}=\{k=\boldsymbol{Q}(\sqrt{m}) ; m=-5, \pm 6,7,10,15, \pm 30\}$.

Proof of (1). Let p_{n} denote the nth prime. Using the well-known Chebyshev's inequality, $p_{n+1}<2 p_{n}, n \geqq 1$, one proves by induction that

$$
\begin{equation*}
p_{n+1}^{2}<\frac{1}{4} p_{1} p_{2} \cdots p_{n} \quad \text { when } n \geqq 5 . \tag{2}
\end{equation*}
$$

For any $k \in K^{0}-E_{8}$, choose n so that $p_{n} \leqq M_{k}<p_{n+1}$. Since $p_{n} \leqq M_{k}$, we have $p_{1} \cdots p_{n} \mid \Delta_{k}$ by definition of K^{0}, and so

$$
p_{n+1}^{2}>M_{k}^{2} \geqq \frac{1}{4}\left|\Delta_{k}\right| \geqq \frac{1}{4} p_{1} \cdots p_{n}
$$

Hence, by (2), $n \leqq 4$ and $M_{k}<p_{5}=11$, from which one easily verifies (1).
(II) $K^{-}-E_{8}$. This part of the problem is almost settled by H. M. Stark
[3] and M. -G. Leu [2]. To be more precise, if k is imaginary, it is easy to see that
(3) $\quad k \in K^{-} \Longleftrightarrow h_{k}=1\left(h_{k} \text { denotes the class number of } k\right)^{*)}$.

Therefore [3] is good enough to handle the imaginary part of $K^{-}-E_{8}$. As for the real part, [2] determined fields with at most one exception. The list of fields is (conjecturally) as follows:
(4) $\quad K^{-}-E_{8}=\{k=\boldsymbol{Q}(\sqrt{m}) ; m=-11,-19,-43,-67,-163,21,29$,

$$
53,77,173,293,437\} .
$$

(III) $K^{+}-E_{8}$. This part of the problem is closely connected with the problem on the least quadratic non-residue. At present, I do not have a proof for the following (conjectural) list hinted by the machine computation:
(5) $\quad K^{+}-E_{8}=\{k=\boldsymbol{Q}(\sqrt{m}) ; m=-15,-23,-47,-71,-119,17,33,73,97\}$.

Remark. Needless to say that any number field k has the Minkowski constant M_{k}. Hence one can create the similar problem for k 's which are not quadratic by using the 'character' belonging to k.

References

[1] H. K. Kim, M.-G. Leu, and T. Ono: On two conjectures on real quadratic fields. Proc. Japan Acad., 63A, 222-224 (1987).
[2] M.-G. Leu: On a conjecture of Ono on real quadratic fields. ibid., 63A, 323-326 (1987).
[3] H. M. Stark: A complete determination of the complex quadratic fields of classnumber one. Michigan Math. J., 14, 1-27 (1967).

[^0]
[^0]: ${ }^{*)}$ If k is real, we have one-way only: $k \in K^{-} \Rightarrow h_{k}=1$.

