15. On the Erdös-Turán Inequality on Uniform Distribution. II

By Petko D. Proinov
Department of Mathematics, University of Plovdiv, Bulgaria
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1988)

This is continued from [1].
2. To prove Theorem 1 we need three lemmas.

Lemma 1. Let a function f satisfy the right Lipschitz condition on \boldsymbol{R} with constant L, and let Δ be a closed interval. Set $\delta=\|f\| / 2 L$, where $\|f\|$ denotes the supremum norm of f on Δ. Then there exists a real number a such that either

$$
\begin{equation*}
f(x+a) \geqq L(x+\delta) \quad \text { for all } x<\delta \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
f(x+a) \leqq L(x-\delta) \quad \text { for all } x>-\delta . \tag{6}
\end{equation*}
$$

Proof. By the assumption, it follows that f is a function of bounded variation on every closed interval. Hence, both limit values $f(x+)$ and $f(x-)$ exist for every $x \in \boldsymbol{R}$. Moreover, we have (7) $\quad f(x+) \leqq f(x) \leqq f(x-) \quad$ for all $x \in \boldsymbol{R}$.

Indeed, since f satisfies the right Lipschitz condition with constant L, we have

$$
f(x+t)-L t \leqq f(x) \leqq f(x-t)+L t
$$

for all $x \in \boldsymbol{R}$ and $t>0$. Passing to the limit in these inequalities as $t \rightarrow 0+$ we obtain (7).

Let us consider f on the closed interval Δ. Then from (7), it follows that there exists a point $b \in \Delta$ such that either $\|f\|=f(b-)$ or $\|f\|=-f(b+)$. Now set

$$
a= \begin{cases}b-\delta & \text { if }\|f\|=f(b-) \tag{8}\\ b+\delta & \text { if }\|f\|=-f(b+)\end{cases}
$$

We shall prove that the real number a defined by (8) satisfies the requirement of the lemma.

Suppose first that $\|f\|=f(b-)$. Then from the definition of δ, we conclude that $f(b-)=2 L \delta$. Now choose two real numbers y and t with $y<t<b$. Since f satisfies the right Lipschitz condition on \boldsymbol{R} with constant L,

$$
f(y) \geqq f(t)-L(t-y)
$$

Passing to the limit in this inequality as $t \rightarrow b$ - we obtain
(9) $\quad f(y) \geqq f(b-)-L(b-y)=2 L \delta-L(b-y)$.

Now let $x<\delta$. Then (8) implies that $x+a<b$. Hence, we can apply (9) with $y=x+a$. Thus, we arrive at

$$
f(x+a) \geqq 2 L \delta-L(b-a-x)=2 L \delta-L(\delta-x)=L(x+\delta),
$$

and so, in the considered case, (5) holds.
In the case $\|f\|=-f(b+)$, it can be proved in a similar way that (6) holds. Therefore, in any case, we either have (5) or (6). Q.E.D.

In what follows, for an integrable function f on $[0,1]$ and a positive integer m, we denote by $I_{m}(f)$ the m th Fejér integral of f, i.e.,

$$
\begin{equation*}
I_{m}(f ; t)=\int_{0}^{1} f(x) F_{m}(x-t) d x \quad \text { for all } t \in \boldsymbol{R} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{m}(x)=\frac{1}{m+1} \sum_{n=-m}^{m}(m+1-|h|) e^{2 \pi i h x} \tag{11}
\end{equation*}
$$

is the m th Fejér kernel. We recall that F_{m} is a nonnegative even function with $\int_{0}^{1 / 2} F_{m}(x) d x=1 / 2$.

Lemma 2. Let a function f be as in Theorem 1. Then there exists a real number a such that the inequality (12)

$$
\|f\|<2 L /(m+1)+2\left|I_{m}(f ; a)\right|
$$

holds for any positive integer m.
Proof. We may assume that f satisfies a right Lipschitz condition since the other case follows immediately from this case (replacing f by $-f$). Set $\delta=\|f\| / 2 L$ ($\|f\|$ is the supremum norm of f on the closed interval $\Delta=$ $[0,1]$). Now extend f on R with period 1 . It is easy to prove that the extended function f satisfies the right Lipschitz condition on the whole real line R with constant L. Then according to Lemma 1 there exists a real number a such that either (5) or (6) holds. Further we assume that (5) holds. The other alternative can be treated in a similar way.

Now let m be a given positive integer. We are going to prove (12). We can suppose that $\|f\| \geqq 2 L /(m+1)$ since otherwise there is nothing to prove. From the last inequality and the definition of δ, we conclude that $\delta \geqq 1 /(m+1)$. Because of the periodicity of f and F_{m}, we can write the Fejér integral $I_{m}(f ; a)$ in the form

$$
\begin{equation*}
I_{m}(f ; a)=\int_{-1 / 2}^{1 / 2} f(x+a) F_{m}(x) d x \tag{13}
\end{equation*}
$$

For the value of δ there are two possible cases:

$$
1 /(m+1) \leqq \delta \leqq 1 / 2 \quad \text { or } \quad \delta>1 / 2
$$

Suppose first that $1 /(m+1) \leqq \delta \leqq 1 / 2$. It is known (see [2: Lemma 1]) that in this case,

$$
\begin{equation*}
\int_{\delta}^{1 / 2} F_{m}(x) d x<1 / 6 \delta(m+1) \tag{14}
\end{equation*}
$$

From (13), it follows that

$$
\begin{equation*}
I_{m}(f ; a)=I_{1}+I_{2}+I_{3}, \tag{15}
\end{equation*}
$$

where I_{1}, I_{2} and I_{3} denote the integrals of the function $f(x+a) F_{m}(x)$ on the intervals $[-\delta, \delta],[-1 / 2,-\delta]$ and $[\delta, 1 / 2]$, respectively. Using (5) and the above mentioned properties of the Fejér kernel we deduce the estimate

$$
\begin{equation*}
I_{1} \geqq L \int_{-\delta}^{\delta}(x+\delta) F_{m}(x) d x=2 L \delta \int_{0}^{\delta} F_{m}(x) d x \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
& =L \delta-2 L \delta \int_{\delta}^{1 / 2} F_{m}(x) d x \\
& =\|f\| / 2-2 L \delta \int_{\partial}^{1 / 2} F_{m}(x) d x .
\end{aligned}
$$

Analogously, using the obvious inequality $f(x+a) \geqq-\|f\|$ which holds for all $x \in \boldsymbol{R}$, we deduce

$$
\begin{equation*}
I_{2} \geqq-\|f\| \int_{-1 / 2}^{-\delta} F_{m}(x) d x=-2 L \delta \int_{\delta}^{1 / 2} F_{m}(x) d x \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{3} \geqq-\|f\| \int_{\delta}^{1 / 2} F_{m}(x) d x=-2 L \delta \int_{\delta}^{1 / 2} F_{m}(x) d x \tag{18}
\end{equation*}
$$

From (15), (16), (17) and (18), it follows that

$$
I_{m}(f ; a) \geqq\|f\| / 2-6 L \delta \int_{\delta}^{1 / 2} F_{m}(x) d x
$$

Combining this inequality with (14) we get

$$
I_{m}(f ; a)>\|f\| / 2-L /(m+1)
$$

which implies (12).
Now suppose that $\delta>1 / 2$. Then from (13), (5) and the above mentioned properties of the Fejér kernel, we obtain

$$
\begin{aligned}
I_{m}(f ; a) & \geqq L \int_{-1 / 2}^{1 / 2}(x+\delta) F_{m}(x) d x \\
& =2 L \delta \int_{0}^{1 / 2} F_{m}(x) d x=\|f\| / 2,
\end{aligned}
$$

which again implies (12).
Q.E.D.

Lemma 3. Let a function f satisfy the one-sided Lipschitz condition on $[0,1]$ with constant L. Suppose also that

$$
f(0)=f(1) \quad \text { and } \quad \int_{0}^{1} f(x) d x=0
$$

Then for any positive integer m, we have

$$
\begin{equation*}
\|f\|<\frac{2 L}{m+1}+\frac{2}{\pi} \sum_{n=1}^{m}\left(\frac{1}{h}-\frac{1}{m+1}\right)|\hat{f}(h)| . \tag{19}
\end{equation*}
$$

Proof. Choose a positive integer m. Using (11) and taking into account that $\int_{0}^{1} f(x) d x=0$ we can write the Fejér integral (10) in the form

$$
\begin{equation*}
I_{m}(f ; t)=-\frac{1}{2 \pi i} \sum_{h=-m}^{m} \frac{m+1-|h|}{(m+1) h} \hat{f}(h) e^{-2 \pi i h t}, \tag{20}
\end{equation*}
$$

where the prime in the sum indicates that $h=0$ is excluded from the range of summation. From (20), it follows that

$$
\begin{equation*}
\left|I_{m}(f ; t)\right| \leqq \frac{1}{\pi} \sum_{h=1}^{m}\left(\frac{1}{h}-\frac{1}{m+1}\right)|\hat{f}(h)| \tag{21}
\end{equation*}
$$

holds for each $t \in \boldsymbol{R}$. From (21) and Lemma 2, we get (19).
Q.E.D.

Proof of Theorem 1. Let f satisfy the assumption of Theorem 1. Then the function f^{*} defined on $[0,1]$ by

$$
f^{*}(x)=f(x)-\int_{0}^{1} f(t) d t
$$

satisfies the assumption of Lemma 3. Applying Lemma 3 to the function f^{*} and taking into account the relations $\left[f^{*}\right] \leqq 2\left\|f^{*}\right\|,\left[f^{*}\right]=[f]$ and $\hat{f}^{*}=\hat{f}$, we get (4).
Q.E.D.

References

[1] P. D. Proinov: On the Erdös-Turán inequality on uniform distribution. I. Proc. Japan Acad., 64A, 27-28 (1988).
[2] H. Niederreiter and W. Philipp: Berry-Esseen bounds and a theorem of Erdös and Turán on uniform distribution mod 1. Duke Math. J., 40, 633-649 (1973).

