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This is continued from [1].
2. To prove Theorem 1 we need three lemmas.
Lemma 1. Let a function f satisfy the right Lipschitz condition on

R with constant L, and let be a closed interval. Set 3--Itfll/2L, where

Ilfll denotes the supremum norm of f on . Then there exists a real
number a such that either
( 5 f(x+a)L(x+) for all x
or
( 6 ) f(x+a)L(x-) for all x>-.

Proof. By the assumption, it 2ollows that f is a 2unction of bounded
variation on every closed interval. Hence, both limit values f(x+) and
f(x--) exist for every x e R. Moreover, we have
7 ) f(x +) <=f(x)f(x --) or all x e R.

Indeed, since f satisfies the right Lipschitz condition with constant L, we

have
f(x+ t) Lt f(x) f(x t)+ Lt

for all x e R and $ >0. Passing to the limit in these inequalities as t-0/
we obtain (7).

Let us consider f on the closed interval A. Then from (7), it ollows
that there exists a point b e A such that either f f(b -) or f f(b +).
Now set

b it f f(b-),
( 8 ) a=

b+ if f f(b+ ).

We shall prove that the real number a defined by (8) satisfies the require-

ment of the lemma.
Suppose first that Ilfll=f(b-). Then from the definition of 8, we

conclude that f(b--)--2L. Now choose two real numbers y and t with
yt<b. Since f satisfies the right Lipsehitz condition on R with constant
L,

f(y)f(t)--L(t--y).
Passing to the limit in this inequality as t-b- we obtain

( 9 ) f(y)_f(b--)--L(b--y)=2L--L(b--y).
Now let x 6. Then (8) implies that x+a <b. Hence, we can apply (9)
with y=x+a. Thus, we arrive at

f(x -t- a)
_
2L L(b a x) 2L( L(( x) L(x -t- )
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(10)

where

and so, in the considered case, (5) holds.
In the case I[fll=-f(b+), it can be proved in a similar way that (6)

holds. Therefore, in any case, we either have (5) or (6). Q.E.D.
In what follows, for an integrable function f on [0, 1] and a positive

integer m, we denote by In(f) the ruth Fejr integral of f, i.e.,

I(f; t)=[’ f(x)F(x-t)dx .for all te R,
30

1 (m(11) F(x) rn-/-i--
is the mth Fejr kernel. We recall that F is a nonnegative even function

with P(z)dx=l/2.
Lemma Z. Let a etion f be a

rel mber a eh that the ieqlit
(12) Ifll<2L/(m+ 1)+21I(f a)l
holds for any positive integer m.

Proof. We may assume that f satisfies a right Lipschitz condition
since the other case follows immediately from this case (replacing f by --f).
Set =]]f]/2L ( f[ is the supremum norm of f on the closed interval
[0, 1]). Now extend f on R with period 1. It is easy to prove that the
extended function f satisfies the right Lipschitz condition on the whole real
line R with constant L. Then according to Lemma 1 there exists a real
number a such that either (5) or (6) holds. Further we assume that (5)
holds. The other alternative can be treated in a similar way.

Now let m be a given positive integer. We are going to prove (12).
We can suppose that f 2L/(m+ 1) since otherwise there is nothing to
prove. From the last inequality and the definition o , we conclude that
l/(m+l). Because of the periodicity of f and F, we can write the
Fejr integral I(f;a) in the form

I/2(13) I(f a) f(x +a)FA)dx.
J /2

For the value o there are two possible cases"

1/(m+)1/2 or >1/2.
Suppose first that 1/(m+1)1/2. It is known (see [2" Lemma I])

that in this case,

(14) N(z)gz <1/6(m+ 1).

Prom (1), it follows that
(lg) I(f )=I+I+I,
where I, I and I denote the integrals
intervals [--,], [--1/,--] and [, 1/], respectively. Using (g) and he
above mentioned roerties of the ejr kernel we deduce he estimate

(16)
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(17)

and

ja

Analogously, using the obvious inequality f(x+a)- [[f[[ which holds for
all x e R, we deduce - F(x)dx 2L F(x)dxI2 -- f(18) I3 f F(x)dx= 2L F,(x)dx.

From (15), (16), (17) and (18), it follows that

I(j’; a) J" 1/2-6L( F(x)dx.

Combining this inequality with (14) we get
I,(f a) :>[[f[]/2--L/(m+ 1),

which implies (12).
Now suppose that 6 1/2. Then from (13), (5) and the above mentioned

properties of the Fejr kernel, we obtain

I(f a)L (x+6)F,(x)dx
j- /2

which again implies (1). .E.D.
Lemma 3. Let etio f atig the one-ideg Lipehit eoditio

o [0, 1] ith eotat L. Suoe alo tt

The or oitive iteger m, we have

Proof. Choose a positive integer m. Using (11) and taking into

account that .[: f(x)dx=O we can write the fejr integral (10) in the form

(20) z (f;
2i :- (m+l)h

where the prime in the sum indicates that h=O is excluded from the range
of summation. From (20), it follows that

holds for each e R. From (21) and Lemma 2, we get (19). Q.E.D.

Proof of Theorem 1. Let f satisfy the assumption of Theorem 1.
Then the function f* defined on [0, 1] by

f*(x)= f(x)--I: f(t)d
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satisfies the assumption of Lemma 3. Applying Lemma 3 to the function

f* and taking into account the relations [f*]<:2 ]If* I, [f*]:=[f] and/*=/,
we get (4). Q.E.D.
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