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1. Introduction. The problem treated in this paper is explained as
.follows. Let G and g denote the 2N-dimensional symplectic group Sp(N, R)
and its Lie algebra, respectively"

G--{A e M(2N, R)IA’JA--J}, g={X e M(2N, R)IX’J+JX=O},
where J= -] and dash denotes matrix transpose. Our problem is to

establish an algebraic approach to finding the quadratic .form
1 fs(x) x’Sx 2, S’= S,

conserved along any solution o.f the linear recurrence on R
2 xt/l=Ax,

Where A is an arbitrary element o.f G. The whole of conservatives given
by (1).forms a Lie algebra with respect to the Poisson bracket [1]. This
problem aims at finding economic conservation laws [2, 3] o.f a discrete
economic growth model, though it seems trivial at a glance.

2. Linear space . In this preliminary section, we introduce a linear
space o.f all matrices commuting with A, and it is proved that one of its
subspaces is Lie algebra isomorphic to the whole o quadratic conservatives
given by (1).

Now, (1)is conserved along any solution of (2), if and only i.f A and
JS commute. Then, the whole o.f quadratic conservatives is identified with
the .following linear space o.f all coefficient matrices"

t2-- {S e M(2N, R) I[A, JS] O, S’--S},
where [A, B]=AB-BA. [2 .forms a Lie algebra with respect to the bracket
( 3 ) (S, T}=SJT--TJS,
which is a representation of the Poisson bracket on/2. Apart .from looking
into 9 directly, we introduce a linear space of all matrices that commute
with A;

=.{L e M(2N, R) I[A, L] 0}.
We define two linear mappings ]"- and a" -f2 by
( 4 (L)=JL’J, a(L)=J(L+(L))/2=(JL+(JL)’)/2.

Lemma 1. 2=id., ()--.
Proof. Let L e . Then, it follows from direct calculation that

ri2(L)=L and [](A), (L)]=([A, L])=0. Since A .is symplectic, we have ](A)
=--A- and accordingly [A, (L)]=0, which means (). This together
with --id. leads to ()--.

The lemma shows that is an involution map on . Then, has two
eigenvalues 1 and is a direct sum of the two. That is, =t9 4, where
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{L e v(L)= L}, q {L e v(L)-- L}.
The projector P from onto is given by

P(L)=(L+(L))/2.
The condition ](L) L is equivalent to L’J+JL= 0 so that t9, which is an
intersection of g and E, is a subalgebra of sp(N, R). Then, P produces an
element of g from any matrix commuting with A. It is to be stressed that
A is an element of a Lie group and P(L) is an element of a Lie algebra.

Now, is connected with 9 in the following manner.
Lemma 2. a() f2, a-’(0)
Proo.f. We choose an arbitrary L. By definition, a(L) is symmetric.

Moreover, since Ja(L)=--(L+(L))/2, it belongs to E and commutes with
A. Thus, a(L)e [2. Conversely, for any S e f2, we put L=--JS. Then,
it is easily proved that L e , and a(L)--S. The second assertion is obvious
from the definitions of a and .

Since E=6-, Lemma 2 shows that f2 is linearly isomorphic to 6.
Furthermore, it holds after slight calculation that
( 5 ) a([L, M])= (a(L), a(M)},
where ( } is given by (3), and L and M belong to . Combining this and
Lemma 2, we have

Theorem 3. t9 is Lie algebra isomorphic to.
The linear mapping a restricted on 0 gives a momentum mapping in

symmetry reduction theory of classical mechanics [4]. Furthermore, we
note that
6 ) a(P(L))=a(L)

holds for any L e .
3. A subspace 1 of ,. In this section, we study how many invari-

ants are obtained among polynomials in A. To see this, we define a linear
subspace 1 of

Et= span {I, A, A +/-, A, }.
Hereafter, we denote by Ca and fa the minimal polynomial and the

eigenpolynomial of A, respectively. When Ca is equal to fa, any matrix
that commutes with A is expressed as a polynomial in A, so that
coincides with . Almost any element in G has this property.

Now, we put

Our interest centers in dim/2, (-dim (9), which is the, number of linearly
independent conservatives (1) obtained from polynomials in A.

Lemma 4. Let d=dim91 and k=degCa, and one of the following
three cases holds good.

(1) If k=2s+l, then d=s.
(2) Ifk=2s and Ca(0)=l, then d=s.
(3) If k=2s and (0)=- 1, then d=s- 1.

Here, s is an integer.
Proof. We note that k is equal to dim E. For any integer i, we put
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7 B,=A*--A-and C=A*+A-i. Then, it holds that Bt e 01 and C e 1. When / is an
odd number 2s+ 1, {B1,..., B Co,..., C8} forms a basis of 1, and we have
k=s. Next, when k is equal to 2s, the 2s- 1 matrices {B,, ., B_,, Co, .,
C_,} are linearly independent and further either B, or C is linearly inde-
pendent of these. Now, since A is symplectic, its minimal polynomial
satisfies (A)=(A-)=0. Then, must take one of the following two
forms"

(a) (x+l)+a(x8-1+x)+ ./as_(x+l+x-)+ax,
(b) (x’--1)+a(x---x)+ +a_(x/’--x-).

When (0)= 1 and (a) holds, B becomes linearly independent. When (0)
1 and (b) holds, C does.
Next, we propose a simple scheme to construct a basis of /21. If we

do not know dim 0, in advance, this scheme naturally produces a maximum
number of linearly independent elements.

Theorem 5. Suppose that {a(A), a(Af), ., a(A)} are. linearly inde-
pendent and a(A/1) are linearly dependent on these d matrices. Then, the
former d matrices form a basis of 21.

Proof. Since A belongs to G, we have a(A)=JB/2, where B is given
by (7). As is seen in the proof of Lemma 4, when dimO=d, the set
{B,..., B} orms a basis of , and the converse is true. Since (1/2)J. "t
-t9 gives a linear isomorphism, the assertion is verified.

Again, we remark that for almost every element A of G, its minimal
polynomial coincides with the eigenpolynomial f. In this case, any
matrix commuting with A is expressed as a polynomial in A so that 2 is
/2 itself.

Theorem 6. Suppose that for an element A of G, its minimal poly-
nomial coincides with its eigenpolynomial. Then, {a(A), ...,a(A)} forms
a basis of [2.

Proof. Under the supposition, it holds that dim 9=2N and (0)=
f(0)=det (A)= 1. Then, we have the conclusion from Lemma 4.

We can obtain all quadratic conservatives for A e G in the case o this
theorem. Furthermore, we have

Theorem 7. Under the same condition as in Theorem 6, the linear
discrete system (2) is completely integrable [5].

Proof. Since P(A)=(A-A-)/2, we have [P(A),P(A)]-O. Then,
it follows from (5) and (6) that (a(A), a(A)}=0. That is., the system (2)
admits N mutually commutative conservatives.

4. Remarks. We close this paper by showing the result of our
scheme. Suppose that a discrete Lgrangian system [6] has a Lagrangian
L(q, v) quadratic homogeneous in q and v which is a 2orward difference of
q. Then, after slight calculation together with discrete Legendre trans-
formation [6], f() (multiplied by constant) is expressed in terms of L



48 S.M.kED.a. [Vol. 64 (A),

--(v’ L_L) 1 v’ 3L

References

1] S. Maeda: Canonical structure and symmetries for discrete systems. Math.
Japon., 25, 405-420 (1980).

2 P.A. Samuelson: Law of conservation of the capital-output ratio. Proc. National
Acad. Sci., Appl. Math. Sci., 57, 1477.-1479 (1970).

3 R. Sato: Theory of Technical Change and Economic Invariance. Academic Press
(1981).

4 R. Abraham and J. E. Marsden" Foundations o Mechanics. 2nd. ed., Benjamin
(1978).

5 S. Maeda: Completely integrable symplectic mapping. Proc. Japan Acad., 63A,
198-200 1987 ).

6 ----: Lagrangian formulation of discrete systems and concept of difference space.
Math. Japon., 27, 336-345 (1982).


