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1. Introduction. The problem treated in this paper is explained as
follows. Let G and ¢ denote the 2N-dimensional symplectic group Sp(N, R)
and its Lie algebra, respectively :

G={AeM@2N,R)|A'JA=J}, g={XeM@2N,R)|X'J+JX=0},

where J= [? _(I)] and dash denotes matrix transpose. Our problem is to

establish an algebraic approach to finding the quadratic form

(1) fs(@)=a'Sxz/2, S’'=8S,
conserved along any solution of the linear recurrence on RY
( 2 ) Xy= Axt)

where A is an arbitrary element of G. The whole of conservatives given
by (1) forms a Lie algebra with respect to the Poisson bracket [1]. This
problem aims at finding economic conservation laws [2, 3] of a discrete
economic growth model, though it seems trivial at a glance.

2. Linear space &. In this preliminary section, we introduce a linear
space & of all matrices commuting with A, and it is proved that one of its
subspaces is Lie algebra isomorphic to the whole of quadratic conservatives
given by (1).

Now, (1) is conserved along any solution of (2), if and only if A and
JS commute. Then, the whole of quadratic conservatives is identified with
the following linear space of all coefficient matrices:

Q={Se M(2N,R)|[A,JS]=0, S'=S},
where [A, Bl=AB—BA. Q2 forms a Lie algebra with respect to the bracket
(3) (8, TY=8JT-—-TJS,
which is a representation of the Poisson bracket on 2. Apart from looking
into 2 directly, we introduce a linear space & of all matrices that commute
with A4 ;

E={LeM@2N,R)|[A, L]=0}.

We define two linear mappings »: 5—& and ¢: 5—2 by
(4) WL)=JLJ,  o(L)=J(L+n(L))/2=(L+(L))]2.

Lemma 1. 7*=id., p(8)=45.

Proof. Let LeZ. Then, it follows from direct calculation that
7’(L)=L and [y(4), n(L)]=7([4, L)=0. Since A is symplectic, we have 7(4)
= --A-" and accordingly [A, »(L)]=0, which means 7(&)C 5. This together
with y*=1d. leads to p(&)=25.

The lemma shows that 7 is an involution map on 5. Then, 5 has two
eigenvalues +1 and £ is a direct sum of the two. Thatis, #=0 @, where
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O0={Le &|yp(l)=L}, O0={Le 8|yp(L)y=—L}.
The projector P from £ onto © is given by
P(L)=(L+nL))/2.
The condition »(L)=L is equivalent to L'J+JL=0 so that &, which is an
intersection of g and Z, is a subalgebra of sp(N, R). Then, P produces an
element of ¢ from any matrix commuting with 4. It is to be stressed that
A is an element of a Lie group and P(L) is an element of a Lie algebra.

Now, Z is connected with £ in the following manner.

Lemma 2. ¢(&)=2, ¢7'(0)=9.

Proof. We choose an arbitrary L. By definition, ¢(L) is symmetric.
Moreover, since Jo(L)= —(L+7(L))/2, it belongs to £ and commutes with
A. Thus, o(L)e 2. Conversely, for any Se 2, we put L=—JS. Then,
it is easily proved that L e & and ¢(L)=S. The second assertion is obvious
from the definitions of ¢ and @.

Since £=601{ @, Lemma 2 shows that £ is linearly isomorphic to 6.
Furthermore, it holds after slight calculation that
(5) a([L, M) =(a(L), a(M)),
where ( , ) is given by (3), and L and M belong to &. Combining this and
Lemma 2, we have

Theorem 3. 6 is Lie algebra isomorphic to £.

The linear mapping ¢ restricted on 6 gives a momentum mapping J in
symmetry reduction theory of classical mechanics [4]. Furthermore, we
note that
(6) o(P(L))=a(L)
holds for any L e 5.

3. A subspace &, of £. In this section, we study how many invari-
ants are obtained among polynomials in A. To see this, we define a linear
subspace &, of &

g,=span{l, 4, A*', A**, .. .},

Hereafter, we denote by ¢, and f, the minimal polynomial and the
eigenpolynomial of A, respectively. When ¢, is equal to f,, any matrix
that commutes with A is expressed as a polynomial in A, so that 7,
coincides with 5. Almost any element in G has this property.

Now, we put

6,=5,N0, 0,=5N0, ,=0(5)=0(0).
Our interest centers in dim 2, (=dim8,), which is the number of linearly
independent conservatives (1) obtained from polynomials in A.

Lemma 4. Let d=dim 2, and k=degg¢,, and one of the following
three cases holds good.

1) If k=2s+1, then d=s.

(2) If k=2s and ¢$,(0)=1, then d=s.

3) If k=2s and ¢$,(0)=—1, then d=s—1.

Here, s is an integer.
Proof. We note that k is equal to dim 5Z,. For any integer 7, we put
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(7) B,=A'"—A-

and C,=A'+ A-*. Then, it holds that B,¢®, and C,c ®,., When k is an
odd number 2s+1, {B,, - - -, B,, C,, - - -, C,} forms a basis of Z,, and we have
kt=s. Next, when k is equal to 2s, the 2s—1 matrices {B,, ---,B,_,, Cy, - - ,

C,_\} are linearly independent and further either B, or C, is linearly inde-
pendent of these. Now, since A is symplectic, its minimal polynomial ¢,
satisfies ¢,(A)=¢,(A"")=0. Then, ¢, must take one of the following two
forms:

@ @+D+a @ '+o)+ - ta, @2 D taa’,

(b) @*—=D4a @™ —2)+ - +a, (2 —2*).

When ¢,(0)=1 and (a) holds, B, becomes linearly independent. When ¢,(0)
= —1 and (b) holds, C, does.

Next, we propose a simple scheme to construct a basis of 2,. If we
do not know dim @, in advance, this scheme naturally produces a maximum
number of linearly independent elements.

Theorem 5. Suppose that {o(A),s(AY), - --,0(A%)} are linearly inde-
pendent and o(A*") are linearly dependent on these d matrices. Then, the
former d matrices form a basis of £,.

Proof. Since A* belongs to G, we haved(4*)=JB,/2, where B, is given
by (7). As is seen in the proof of Lemma 4, when dim®,=d, the set
{By, - - -, B,} forms a basis of 6,, and the converse is true. Since (1/2)J- :6,
— 0, gives a linear isomorphism, the assertion is verified.

Again, we remark that for almost every element A of G, its minimal
polynomial ¢, coincides with the eigenpolynomial f,. In this case, any
matrix commuting with A is expressed as a polynomial in A so that @, is
£ itself.

Theorem 6. Suppose that for an element A of G, its minimal poly-
nomial coincides with its eigenpolynomial. Then, {¢(4), - - -,a(A")} forms
a basis of Q.

Proof. Under the supposition, it holds that dim 2,=2N and ¢,(0)=
f4(0)=det (A)=1. Then, we have the conclusion from Lemma 4.

We can obtain all quadratic conservatives for A € G in the case of this
theorem. Furthermore, we have

Theorem 7. Under the same condition as in Theorem 6, the linear
discrete system (2) is completely integrable [5].

Proof. Since P(A")=(A*—A"")/2, we have [P(4'), P(A")]=0. Then,
it follows from (5) and (6) that {(d¢(49, ¢(47)>=0. That is, the system (2)
admits N mutually commutative conservatives.

4. Remarks. We close this paper by showing the result of our
scheme. Suppose that a discrete Lagrangian system [6] has a Lagrangian
L(q, v) quadratic homogeneous in ¢ and v which is a forward difference of
q. Then, after a slight calculation together with discrete Legendre trans-
formation [6], f,, (multiplied by a constant) is expressed in terms of L
as
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