14. Quadratic Conservatives of Linear Symplectic System

By Shigeru MaEda
Department of Industrial Management, Osaka Institute of Technology
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1988)

1. Introduction. The problem treated in this paper is explained as follows. Let G and g denote the $2 N$-dimensional symplectic group $\operatorname{Sp}(N, \boldsymbol{R})$ and its Lie algebra, respectively:

$$
G=\left\{A \in M(2 N, \boldsymbol{R}) \mid A^{\prime} J A=J\right\}, \quad g=\left\{X \in M(2 N, \boldsymbol{R}) \mid X^{\prime} J+J X=0\right\},
$$

where $J=\left[\begin{array}{rr}0 & -I \\ I & 0\end{array}\right]$ and dash denotes matrix transpose. Our problem is to establish an algebraic approach to finding the quadratic form

$$
\begin{equation*}
f_{S}(x)=x^{\prime} S x / 2, \quad S^{\prime}=S \tag{1}
\end{equation*}
$$ conserved along any solution of the linear recurrence on \boldsymbol{R}^{N}

$$
\begin{equation*}
x_{t+1}=A x_{t} \tag{2}
\end{equation*}
$$

where A is an arbitrary element of G. The whole of conservatives given by (1) forms a Lie algebra with respect to the Poisson bracket [1]. This problem aims at finding economic conservation laws [2, 3] of a discrete economic growth model, though it seems trivial at a glance.
2. Linear space Ξ. In this preliminary section, we introduce a linear space Ξ of all matrices commuting with A, and it is proved that one of its subspaces is Lie algebra isomorphic to the whole of quadratic conservatives given by (1).

Now, (1) is conserved along any solution of (2), if and only if A and $J S$ commute. Then, the whole of quadratic conservatives is identified with the following linear space of all coefficient matrices:

$$
\Omega=\left\{S \in M(2 N, R) \mid[A, J S]=0, S^{\prime}=S\right\},
$$

where $[A, B]=A B-B A . \Omega$ forms a Lie algebra with respect to the bracket (3) $\langle S, T\rangle=S J T-T J S$,
which is a representation of the Poisson bracket on Ω. Apart from looking into Ω directly, we introduce a linear space Ξ of all matrices that commute with A;

$$
\Xi=\{L \in M(2 N, \boldsymbol{R}) \mid[A, L]=0\} .
$$

We define two linear mappings $\eta: \Xi \rightarrow \Xi$ and $\sigma: \Xi \rightarrow \Omega$ by

$$
\begin{equation*}
\eta(L)=J L^{\prime} J, \quad \sigma(L)=J(L+\eta(L)) / 2=\left(J L+(J L)^{\prime}\right) / 2 \tag{4}
\end{equation*}
$$

Lemma 1. $\quad \eta^{2}=i d ., \eta(\boldsymbol{\Xi})=\boldsymbol{\Xi}$.
Proof. Let $L \in \Xi$. Then, it follows from direct calculation that $\eta^{2}(L)=L$ and $[\eta(A), \eta(L)]=\eta([A, L])=0$. Since A is symplectic, we have $\eta(A)$ $=-A^{-1}$ and accordingly $[A, \eta(L)]=0$, which means $\eta(\Xi) \subset \Xi$. This together with $\eta^{2}=i d$. leads to $\eta(\boldsymbol{\Xi})=\boldsymbol{\Xi}$.

The lemma shows that η is an involution map on Ξ. Then, η has two eigenvalues ± 1 and Ξ is a direct sum of the two. That is, $\Xi=\Theta \dot{+} \Phi$, where

$$
\Theta=\{L \in \Xi \mid \eta(L)=L\}, \quad \Phi=\{L \in \Xi \mid \eta(L)=-L\} .
$$

The projector P from E onto Θ is given by

$$
P(L)=(L+\eta(L)) / 2 .
$$

The condition $\eta(L)=L$ is equivalent to $L^{\prime} J+J L=0$ so that Θ, which is an intersection of g and Ξ, is a subalgebra of $\operatorname{sp}(N, \boldsymbol{R})$. Then, P produces an element of g from any matrix commuting with A. It is to be stressed that A is an element of a Lie group and $P(L)$ is an element of a Lie algebra.

Now, Ξ is connected with Ω in the following manner.
Lemma 2. $\sigma(\Xi)=\Omega, \sigma^{-1}(0)=\Phi$.
Proof. We choose an arbitrary L. By definition, $\sigma(L)$ is symmetric. Moreover, since $J \sigma(L)=-(L+\eta(L)) / 2$, it belongs to Ξ and commutes with A. Thus, $\sigma(L) \in \Omega$. Conversely, for any $S \in \Omega$, we put $L=-J S$. Then, it is easily proved that $L \in \Xi$ and $\sigma(L)=S$. The second assertion is obvious from the definitions of σ and Φ.

Since $\Xi=\Theta \dot{+} \Phi$, Lemma 2 shows that Ω is linearly isomorphic to Θ. Furthermore, it holds after slight calculation that

$$
\begin{equation*}
\sigma([L, M])=\langle\sigma(L), \sigma(M)\rangle \tag{5}
\end{equation*}
$$

where \langle,$\rangle is given by (3), and L$ and M belong to Θ. Combining this and Lemma 2, we have

Theorem 3. Θ is Lie algebra isomorphic to Ω.
The linear mapping σ restricted on Θ gives a momentum mapping \hat{J} in symmetry reduction theory of classical mechanics [4]. Furthermore, we note that
(6)

$$
\sigma(P(L))=\sigma(L)
$$

holds for any $L \in \Xi$.
3. A subspace Ξ_{1} of $\boldsymbol{\Xi}$. In this section, we study how many invariants are obtained among polynomials in A. To see this, we define a linear subspace Ξ_{1} of Ξ

$$
\Xi_{1}=\operatorname{span}\left\{I, A, A^{ \pm 1}, A^{ \pm 2}, \cdots\right\} .
$$

Hereafter, we denote by ϕ_{A} and f_{A} the minimal polynomial and the eigenpolynomial of A, respectively. When ϕ_{A} is equal to f_{A}, any matrix that commutes with A is expressed as a polynomial in A, so that Ξ_{1} coincides with Ξ. Almost any element in G has this property.

Now, we put

$$
\Theta_{1}=\Xi_{1} \cap \Theta, \quad \Phi_{1}=\Xi_{1} \cap \Phi, \quad \Omega_{1}=\sigma\left(\Xi_{1}\right)=\sigma\left(\Theta_{1}\right) .
$$

Our interest centers in $\operatorname{dim} \Omega_{1}\left(=\operatorname{dim} \Theta_{1}\right)$, which is the number of linearly independent conservatives (1) obtained from polynomials in A.

Lemma 4. Let $d=\operatorname{dim} \Omega_{1}$ and $k=\operatorname{deg} \phi_{A}$, and one of the following three cases holds good.
(1) If $k=2 s+1$, then $d=s$.
(2) If $k=2 s$ and $\phi_{A}(0)=1$, then $d=s$.
(3) If $k=2 s$ and $\phi_{A}(0)=-1$, then $d=s-1$.

Here, s is an integer.
Proof. We note that k is equal to $\operatorname{dim} \Xi_{1}$. For any integer i, we put
(7)

$$
B_{i}=A^{i}-A^{-i}
$$

and $C_{i}=A^{i}+A^{-i}$. Then, it holds that $B_{i} \in \Theta_{1}$ and $C_{i} \in \Phi_{1}$. When k is an odd number $2 s+1,\left\{B_{1}, \cdots, B_{s}, C_{0}, \cdots, C_{s}\right\}$ forms a basis of E_{1}, and we have $k=s$. Next, when k is equal to $2 s$, the $2 s-1$ matrices $\left\{B_{1}, \cdots, B_{s-1}, C_{0}, \cdots\right.$, $\left.C_{s-1}\right\}$ are linearly independent and further either B_{s} or C_{s} is linearly independent of these. Now, since A is symplectic, its minimal polynomial ϕ_{A} satisfies $\phi_{A}(A)=\phi_{A}\left(A^{-1}\right)=0$. Then, ϕ_{A} must take one of the following two forms:
(a) $\left(x^{2 s}+1\right)+a_{1}\left(x^{2 s-1}+x\right)+\cdots+a_{s-1}\left(x^{s+1}+x^{s-1}\right)+a_{s} x^{s}$,
(b) $\left(x^{2 s}-1\right)+a_{1}\left(x^{2 s-1}-x\right)+\cdots+a_{s-1}\left(x^{s+1}-x^{s-1}\right)$.

When $\phi_{A}(0)=1$ and (a) holds, B_{s} becomes linearly independent. When $\phi_{A}(0)$ $=-1$ and (b) holds, C_{s} does.

Next, we propose a simple scheme to construct a basis of Ω_{1}. If we do not know $\operatorname{dim} \Theta_{1}$ in advance, this scheme naturally produces a maximum number of linearly independent elements.

Theorem 5. Suppose that $\left\{\sigma(A), \sigma\left(A^{2}\right), \cdots, \sigma\left(A^{d}\right)\right\}$ are linearly independent and $\sigma\left(A^{d+1}\right)$ are linearly dependent on these d matrices. Then, the former d matrices form a basis of Ω_{1}.

Proof. Since A^{i} belongs to G, we have $\sigma\left(A^{i}\right)=J B_{i} / 2$, where B_{i} is given by (7). As is seen in the proof of Lemma 4, when $\operatorname{dim} \Theta_{1}=d$, the set $\left\{B_{1}, \cdots, B_{a}\right\}$ forms a basis of Θ_{1}, and the converse is true. Since (1/2)J.: θ_{1} $\rightarrow \Omega_{1}$ gives a linear isomorphism, the assertion is verified.

Again, we remark that for almost every element A of G, its minimal polynomial ϕ_{A} coincides with the eigenpolynomial f_{A}. In this case, any matrix commuting with A is expressed as a polynomial in A so that Ω_{1} is Ω itself.

Theorem 6. Suppose that for an element A of G, its minimal polynomial coincides with its eigenpolynomial. Then, $\left\{\sigma(A), \cdots, \sigma\left(A^{N}\right)\right\}$ forms a basis of Ω.

Proof. Under the supposition, it holds that $\operatorname{dim} \Omega_{1}=2 N$ and $\phi_{A}(0)=$ $f_{A}(0)=\operatorname{det}(A)=1$. Then, we have the conclusion from Lemma 4.

We can obtain all quadratic conservatives for $A \in G$ in the case of this theorem. Furthermore, we have

Theorem 7. Under the same condition as in Theorem 6, the linear discrete system (2) is completely integrable [5].

Proof. Since $P\left(A^{i}\right)=\left(A^{i}-A^{-i}\right) / 2$, we have $\left[P\left(A^{i}\right), P\left(A^{j}\right)\right]=0$. Then, it follows from (5) and (6) that $\left\langle\sigma\left(A^{i}\right), \sigma\left(A^{j}\right)\right\rangle=0$. That is, the system (2) admits N mutually commutative conservatives.
4. Remarks. We close this paper by showing the result of our scheme. Suppose that a discrete Lagrangian system [6] has a Lagrangian $L(q, v)$ quadratic homogeneous in q and v which is a forward difference of q. Then, after a slight calculation together with discrete Legendre transformation [6], $f_{\sigma(A)}$ (multiplied by a constant) is expressed in terms of L as

$$
-\left(v^{\prime} \cdot \frac{\partial L}{\partial v}-L\right)+\frac{1}{2} v^{\prime} \cdot \frac{\partial L}{\partial q}
$$

References

[1] S. Maeda: Canonical structure and symmetries for discrete systems. Math. Japon., 25, 405-420 (1980).
[2] P. A. Samuelson: Law of conservation of the capital-output ratio. Proc. National Acad. Sci., Appl. Math. Sci., 67, 1477-1479 (1970).
[3] R. Sato: Theory of Technical Change and Economic Invariance. Academic Press (1981).
[4] R. Abraham and J. E. Marsden: Foundations of Mechanics. 2nd. ed., Benjamin (1978).
[5] S. Maeda: Completely integrable symplectic mapping. Proc. Japan Acad., 63A, 198-200 (1987).
[6] --: Lagrangian formulation of discrete systems and concept of difference space. Math. Japon., 27, 336-345 (1982).

