104. The Cauchy Problem for a Class of Hyperbolic Operators with Triple Characteristics

By Enrico Bernardi and Antonio Bove
Department of Mathematics, University of Bologna, Italy
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1988)

1. Introduction. In the C^{∞} category the well-posedness of the Cauchy problem for hyperbolic operators depends in general on the behaviour of the lower order terms. When the characteristic roots are at most double, necessary and (almost) sufficient conditions have been given by Ivrii-Petkov [5], Ivrii [4] and Hörmander [2]. For higher order multiplicities results on the (microlocal) Cauchy problem have been proved by Bernardi [1] in the involutive case and by Nishitani [6] in the "effectively" hyperbolic case. In comparison with these last two cases the Levi conditions in a non-involutive and "non-effectively" hyperbolic situation seem to be much more involved and that is the reason why we restricted ourselves to multiplicity of order three.

Let us now introduce our notations. Let $\Omega \subset \boldsymbol{R}^{n+1}$ an open subset, $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \Omega, D_{x_{j}}=(1 / i) \partial_{x_{j}}, j=0, \cdots, n, x=\left(x_{0}, x^{\prime}\right)$. Let $P\left(x, D_{x}\right)=$ $P_{m}\left(x, D_{x}\right)+P_{m-1}\left(x, D_{x}\right)+\cdots$, be a hyperbolic differential operator of order m. We denote by $\Gamma_{\rho}, \rho \in \Omega \times \boldsymbol{R}^{n} \backslash\{0\}$, the hyperbolicity cone of P in ρ and by Γ_{ρ}^{σ} the polar of Γ with respect to the symplectic two-form $\sigma=d \xi \wedge d x=d \omega, \omega$ the canonical one-form. See [7] for the definition of Γ_{ρ}. We recall the definition of the subprincipal symbol of $P: P_{m-1}^{s}(x, \xi)=P_{m-1}(x, \xi)+(1 / 2) \sum_{j=0}^{n} \partial_{x_{j \xi j}}^{2}$ $p_{m}(x, \xi)$. It is invariantly defined at double characteristic points of p_{m}. If q is a hyperbolic operator with double characteristics we note by F_{q} the fundamental matrix of q_{2}, the principal symbol of q, and by $\mathrm{Tr}^{+} F_{q}=\sum \lambda_{j}$, where $\pm i \lambda_{j} \in s p\left(F_{q}\right)$. See [3] for precise definitions. We now state our results:
2. Results. We shall make the following assumptions on P.

H1) The principal symbol of $P, p_{m}(x, \xi)$ is hyperbolic with respect to ξ_{0}.
H2) The characteristic roots of $\xi_{0} \rightarrow P_{m}\left(x, \xi_{0}, \xi^{\prime}\right)$ have multiplicities at most of order 3 and the triple characteristic set $\Sigma=\left\{(x, \xi) \in \Omega \times \boldsymbol{R}^{n} \backslash\{0\} \mid\right.$ $\left.p_{m}(x, \xi)=d p_{m}(x, \xi)=d^{2} p_{m}(x, \xi)=0\right\}$ is a C^{∞} manifold such that rank $\left.\sigma\right|_{\Sigma}=$ const and ω does not vanish identically on $T \Sigma$.

Let $\rho \in \Sigma$:
H3 $)_{\rho}$ Denote by $\mathrm{T}_{\rho}\left(\Omega \times \boldsymbol{R}^{n} \backslash\{0\}\right) \ni \delta z \rightarrow P_{m, \rho}(\delta z)$ the localization of P_{m} at ρ (see e.g. [7]). Then
(i) $P_{m, \rho}(\delta z)=L_{1}(\delta z) Q_{2}(\delta z)$ where $L_{1}(\delta z)=\delta \xi_{0}-l_{1}\left(\delta x, \delta \xi^{\prime}\right), l_{1}$ being a real linear form in ($\delta x, \delta \xi^{\prime}$).
(ii) $Q_{2}(\delta z)$ is a real hyperbolic quadratic form such that:
a) $\operatorname{dim} \operatorname{Ker} F_{Q_{2}}=\operatorname{dim} T_{\rho} \Sigma$
b) $\operatorname{Ker} F_{Q_{2}}^{2} \cap \operatorname{Im} F_{Q_{2}}^{2}=\{0\}$
c) $\forall v \neq 0, v \in V^{+}=\underset{\substack{i \lambda \in s \in\left(F^{2} F_{2}\right) \\ i>0}}{\oplus} \operatorname{Ker}\left(F_{Q_{2}}-i \lambda I\right), \quad-i \sigma(v, \bar{v})>0$
d) $s p\left(F_{Q_{2}}\right) \subset i \boldsymbol{R}$.

H4) ${ }_{\rho, l}$
$H_{L_{1}} \in \Gamma_{Q_{2}}^{s} \cap \operatorname{Ker} F_{Q_{2}}$ $\mathrm{H} 4)_{\rho, \mathrm{s}}$ $H_{L_{1}} \in \operatorname{Int}\left(\Gamma_{q_{2}}\right) \cap T_{\rho} \Sigma$.
Set $\Omega_{t}=\left\{x \in \Omega \mid x_{0}<t\right\}$. For a definition of correctly posed Cauchy problem for P in Ω_{t} we refer to Hörmander, [2].

Our first result will be the following :
Theorem 1. Assume that the Cauchy problem of P is well posed in Ω_{t}, t small. Let ρ be a triple characteristic point of P_{m}. If H1), H3) ${ }_{\rho}$ (i), (ii), b)-d) and H 4$)_{\rho, l}$ hold, then the following conditions are necessary :

$$
\begin{array}{lcc}
\mathrm{L} 1)_{l} & \operatorname{Re} p_{m-1}^{s}(\rho)=0, & H_{\mathrm{Tr}+\mathrm{F}_{2} L_{1} \pm \operatorname{Re} p_{m-1}^{s}(\rho)} \in \Gamma_{\rho}^{\sigma} . \\
\mathrm{L} 2) & \operatorname{Im} p_{m-1}^{s}(\rho)=0, \quad H_{\operatorname{Im} p_{m-1}^{s}(\rho)=0 .}
\end{array}
$$

Next we have
Theorem 2. Assume that P verifies hypotheses H1), H2), and $\forall \rho \in \Sigma$ $\left.\mathrm{H} 3)_{\rho}, \mathrm{H} 4\right)_{\rho, s}$. Then if :
L1) ${ }_{s}$

$$
\begin{array}{ll}
\operatorname{Re} p_{m-1}^{s}(\rho)=0, & \forall \rho \in \Sigma \\
H_{\mathrm{Tr}+F_{Q_{2} L_{1} \pm \operatorname{Re} p_{m-1}^{s}(\rho)}} \in \operatorname{Int}\left(\Gamma_{\rho}^{o}\right), & \forall \rho \in \Sigma .
\end{array}
$$

and L2) hold, the Cauchy problem for P in Ω_{0} is well posed.
Remarks. (i) As a consequence of H 4$)_{\rho, s}$ we have that $P_{m, \rho}$ is a strictly hyperbolic polynomial; moreover outside Σp_{m} has only simple characteristics and the Hamiltonian flow of p_{m} does not have limit points on Σ.
(ii) As a matter of fact Theorem 1 is true in larger assumptions: in particular we can drop hypotheses H3) (ii), b), c).
(iii) If $P=L \cdot B$, where L is a first order differential hyperbolic operator and B is a second order non effectively hyperbolic operator with double characteristics, our Levi conditions L1), L2) give back the usual Ivrii-Petkov-Hörmander conditions for B. Moreover the known Ivrii-Petkov necessary conditions are implied by ours.
(iv) All the assumptions and the Levi conditions L1), L2) are invariant under canonical transformations.

Let us finally give an example of an operator satisfying our conditions:

$$
P(x, D)=\left(D_{0}-l D_{1}\right)\left(-D_{0}^{2}+D_{1}^{2}+D_{2}^{2}+x_{2}^{2} D_{n}^{2}\right)+\left(c_{0} D_{0}+c_{1} D_{1}+c_{2} D_{2}\right) D_{n} .
$$

In this case H4) says $|l| \leq 1$. L2) states that $c_{j} \in R, j=0,1,2$. Finally L1) $)_{l}$ is equivalent to:

$$
1-\left|c_{0}\right| \geq \sqrt{c_{2}^{2}+\left(\left|c_{1}\right|-l\right)^{2}}
$$

and these are the necessary and sufficient conditions in order that the Cauchy problem for P be well-posed.

References

[1] E. Bernardi: Propagation of singularities for hyperbolic operators with multiple involutive characteristics. Osaka J. Math., 25, 19-31 (1988).
[2] L. Hörmander: The Cauchy problem for differential equations with double characteristics. J. Analyse Math., 32, 118-196 (1977).
[3] -_: The Analysis of Linear Partial Differential Operators. III. SpringerVerlag, Berlin (1985).
[4] V. Ja. Ivrii: The well-posedness of the Cauchy problem for non-strictly hyperbolic operators. III. The energy integral, Trans. Moscow Math. Soc., 34, 149-168 (1978).
[5] V. Ja. Ivrii and V. M. Petkov: Necessary conditions for the correctness of the Cauchy problem for non strictly hyperbolic equations. Russian Math. Surveys, 29 (5), 1-70 (1974).
[6] T. Nishitani: Hyperbolic operators with symplectic multiple characteristics. (1988) (preprint).
[7] S. Wakabayashi: Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems. Comm. in P.D.E., 9, 1147-1177 (1984).

