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Introduction. For a, bO, we define two sequences (a} and

ao=a, bo=b
1 (anq-b), bn+=V/anb,n 1"--" -" n=0, 1, 2,

It is well known and easily proved that both sequences converge to a com-
mon limit

M(a, b)= lim a lim b,
which is called the arithmetic-geometric mean of a and b.

When a and b are complex numbers, we can define a sequence {(a, b)}
by the same algorithm (1.1). However, since there are two choices for b/
at each step of (1.1), we get uncountably many sequences ((a, b)}, which
make the situation much more complicated than in the real case. Although
the study of this case was initiated by Gauss, we refer to Cox [1, 2] as a
modern account of what happens to the arithmetic-geometric mean of two
complex numbers.

We assume
( A ) a, b e C, ab=O and a+_b=/=0.
The excluded cases, though trivial, will turn out to be singular in a certain
sense. It is easy to see that a and bn also satisfy (A) for all n0.

A pair (an, b n) is called the right choice if
Re (bn/an)O or Re (bn/a)--O, Im (b/an)O.

Note that one o (a, bn) and (an, --bn) is always the right choice, while the
other is "the wrong choice".

One can prove that or any sequence {(an, b)} the limit r= lim a lim b
exists and that r:/:0 i and only if all but finitely many o (a, b) are right
choices ([1], [3]). Let (a, b) denote the set o such non-zero limits and
M(a, b) denote the limit attained by {(a, b)} where (an, b) is the right choice
or all n 1.

Theorem (Cox [1], Geppert [4]). Let a and b satisfy (A). Then all
the values r of (a, b) are given by

r- pM(a, b)-+iqM(a+b, a--b)-where p and q are arbitrary relatively prime integers satisfying p-- 1 mod 4
and q-- 0 mod 4.

The purpose o this note is to give a sketch ot a proo different from
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Cox’s; our proof does not rely on theta identities, but on certain integrals
on the elliptic curve, y=x(1- x)(a(1-- x) + bx)

M(a, b)- 1: dx
y(1.2)

iM(a+b,a_b)_= 1; dx
y

The first formula is introduced in [1] in a slightly different ashion. The
second follows rom the first by a change of the variable" (1-x)(1-x’)= 1.

2. Connectedness of (z). Due to the homogeneity, M(a, b)=
2M(a, b), (a, 2a)= Y(a, b), e C, we may put a= 1, b z and write M(z)=
M(1, z) and (z)=(1, z). The assumption (A) is now

z e C0 "= C\{0, +__ 1}.
a(z) and b(z) are algebraic functions possibly with branch singularities at
0, +__I and c. (z) consists of values of holomorphic functions; this
follows from the fact that lim a(z):lim b(z) locally defines a holomorphic
function.

The first part f our proof consists in showing that, for any fixed z0 e Co,
(2.1) Y(z0) {7.M(z0) [7] e (C0 z0)},
where 7.f denotes the holomorphic function obtained by the analytic con-.
tinuation of f along the path 7. The above statement is an easy conse-
quence of the following observation.

Lemma. Let Zo e Co and {(a,(z0), bn(zo))}=o be a sequence defined by the
algorithm (1.1) with a0=l and b0=z0. Suppose that there is a number
N(>_2) such that (an, b,) is the right choice for all nN. Then there exists
a point z and a curve 7 in Co connecting Zo to z such that (7.a,(z,), 7.b,(z))
is the right choice for every-n.>_N-- 1.

3. A monodromy representation. (2.1) says that all the values o
(z0) are attained by the analytic continuation o M(z) along various cycles
of (C0; z0). We will now study 7.M(zo) when z0=l/2; the general case
follows easily from this if we connect z0 to 1/2 by a suitable path.

Let 7 be the circle o radius 1/2 around the center z-1 and 7o the cir-
cle of radius 1/2 around z=0; both are oriented in the positive direction.
We will consider them. as elements o ,(C0 1/2). Let 7_ be the cycle that
starts at the point 1/2, moves along the upper semi-circle of 70, then goes
on the circle o radius 1/2 around the point --1 and finally returns to the
point 1/2 traveling the same upper hal o 70. Note that (C0; 1/2) is
free group generated by 7_, 70 and 7.

We now write (1.2) in the following form"

(M(z)-, iM(l+z, 1--z)-*)=(/ 2 /)(u(2), u.(2)),
where 2= 2(z) (1-- z)- and

u()--: dx u() : dx
y(2)’ y(2)

with y(2)= x(1-- x)(2-- x).
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The map ](z):Co-+C :=C\{0,1} induces the map .:(C0; 1/2)-
(C 4/3). We then have

where and are cycles e (C ;4/3) defined as ollows: moves once
around the point 1 (but not 0) and moves once around the points 0 and
1, both in the positive direction.

We are now concerned with what happens to u and u2 when moves
along the cycle or . This actually corresponds to the question of a
monodromy representation of a Legendre equation,

2(2 1)u"+ (22-- 1)u’+ (1 4)u-- 0,
since u and form a undamental system of the equation. However, we
do not need this act here. A continuous variation of the paths of integra-
tion or u and u. in accordance with the move of leads to

Therefore, all

(1)7.(M(z) -1, iM(l+z, 1--z)-1), 7ez, C0;-
are obtained by the action of the subgroup F (of SLy(Z)) generated by

U,V and U-’VU.
Now, we define F(4) as the group of matrices

such that p=s=_l (mod 4), q--0 (mod 4) and r=_0 (mod 2). The last part of
our proof is devoted to proving F=F(4). Our theorem is an immediate
consequence of this, since the set o the first rows o the matrices o F(4)
equals

{(p, q); p and q are relatively prime, pl (mod 4) and q----0 (mod 4)}.
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