91. A Holomorphic Structure of the Arithmetic-geometric Mean of Gauss

By Kimimasa Nishiwada
Institute of Mathematics, Yoshida College, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 14, 1988)

§ 1. Introduction. For $a, b>0$, we define two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ by

$$
\begin{array}{cc}
a_{0}=a, & b_{0}=b \tag{1.1}\\
a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right), & b_{n+1}=\sqrt{a_{n} b_{n}},
\end{array} \quad n=0,1,2, \cdots . ~ \$
$$

It is well known and easily proved that both sequences converge to a common limit

$$
M(a, b)=\lim a_{n}=\lim b_{n},
$$

which is called the arithmetic-geometric mean of a and b.
When a and b are complex numbers, we can define a sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ by the same algorithm (1.1). However, since there are two choices for b_{n+1} at each step of (1.1), we get uncountably many sequences $\left\{\left(a_{n}, b_{n}\right)\right\}$, which make the situation much more complicated than in the real case. Although the study of this case was initiated by Gauss, we refer to Cox [1, 2] as a modern account of what happens to the arithmetic-geometric mean of two complex numbers.

We assume
(A)

$$
a, b \in C, \quad a b \neq 0 \quad \text { and } \quad a \pm b \neq 0
$$

The excluded cases, though trivial, will turn out to be singular in a certain sense. It is easy to see that a_{n} and b_{n} also satisfy (A) for all $n \geq 0$.

A pair $\left(a_{n}, b_{n}\right)$ is called the right choice if

$$
\operatorname{Re}\left(b_{n} / a_{n}\right)>0 \quad \text { or } \quad \operatorname{Re}\left(b_{n} / a_{n}\right)=0, \quad \operatorname{Im}\left(b_{n} / a_{n}\right)>0 .
$$

Note that one of (a_{n}, b_{n}) and $\left(a_{n},-b_{n}\right)$ is always the right choice, while the other is "the wrong choice".

One can prove that for any sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ the $\operatorname{limit} \tau=\lim a_{n}=\lim b_{n}$ exists and that $\tau \neq 0$ if and only if all but finitely many of (a_{n}, b_{n}) are right choices ([1], [3]). Let $\mathfrak{M}(a, b)$ denote the set of such non-zero limits and $M(a, b)$ denote the limit attained by $\left\{\left(a_{n}, b_{n}\right)\right\}$ where $\left(a_{n}, b_{n}\right)$ is the right choice for all $n \geq 1$.

Theorem (Cox [1], Geppert [4]). Let a and b satisfy (A). Then all the values τ of $\mathfrak{M}(a, b)$ are given by

$$
\tau^{-1}=p M(a, b)^{-1}+i q M(a+b, a-b)^{-1}
$$

where p and q are arbitrary relatively prime integers satisfying $p \equiv 1 \bmod 4$ and $q \equiv 0 \bmod 4$.

The purpose of this note is to give a sketch of a proof different from

Cox's; our proof does not rely on theta identities, but on certain integrals on the elliptic curve, $y^{2}=x(1-x)\left(a^{2}(1-x)+b^{2} x\right)$:

$$
\begin{align*}
& M(a, b)^{-1}=\frac{1}{\pi} \int_{0}^{1} \frac{d x}{y} \\
& i M(a+b, a-b)^{-1}=\frac{1}{\pi} \int_{0}^{-\infty} \frac{d x}{y} . \tag{1.2}
\end{align*}
$$

The first formula is introduced in [1] in a slightly different fashion. The second follows from the first by a change of the variable: $(1-x)\left(1-x^{\prime}\right)=1$.
§2. Connectedness of $\mathfrak{M}(z)$. Due to the homogeneity, $M(\lambda a, \lambda b)=$ $\lambda M(a, b), \mathfrak{M}(\lambda a, \lambda a)=\lambda M(a, b), \lambda \in C$, we may put $a=1, b=z$ and write $M(z)=$ $M(1, z)$ and $\mathfrak{M}(z)=\mathfrak{M}(1, z)$. The assumption (A) is now

$$
z \in C_{0}:=C \backslash\{0, \pm 1\}
$$

$a_{n}(z)$ and $b_{n}(z)$ are algebraic functions possibly with branch singularities at $0, \pm 1$ and ∞. $\mathfrak{M}(z)$ consists of values of holomorphic functions; this follows from the fact that $\lim a_{n}(z)=\lim b_{n}(z)$ locally defines a holomorphic function.

The first part of our proof consists in showing that, for any fixed $z_{0} \in \boldsymbol{C}_{0}$,

$$
\begin{equation*}
\mathfrak{M}\left(z_{0}\right)=\left\{\gamma_{*} M\left(z_{0}\right) ;[\gamma] \in \pi_{1}\left(\boldsymbol{C}_{0} ; z_{0}\right)\right\} \tag{2.1}
\end{equation*}
$$

where $\gamma_{*} f$ denotes the holomorphic function obtained by the analytic conn* tinuation of f along the path γ. The above statement is an easy consequence of the following observation.

Lemma. Let $z_{0} \in C_{0}$ and $\left\{\left(a_{n}\left(z_{0}\right), b_{n}\left(z_{0}\right)\right\}_{n=0}^{\infty}\right.$ be a sequence defined by the algorithm (1.1) with $a_{0}=1$ and $b_{0}=z_{0}$. Suppose that there is a number $N(\geq 2)$ such that $\left(a_{n}, b_{n}\right)$ is the right choice for all $n \geq N$. Then there exists a point z_{1} and a curve γ in C_{0} connecting z_{0} to z_{1} such that $\left(\gamma_{*} a_{n}\left(z_{1}\right), \gamma_{*} b_{n}\left(z_{1}\right)\right)$ is the right choice for every $n \geq N-1$.
§3. A monodromy representation. (2.1) says that all the values of $\mathfrak{M}\left(z_{0}\right)$ are attained by the analytic continuation of $M(z)$ along various cycles of $\pi_{1}\left(C_{0} ; z_{0}\right)$. We will now study $\gamma_{*} M\left(z_{0}\right)$ when $z_{0}=1 / 2$; the general case follows easily from this if we connect z_{0} to $1 / 2$ by a suitable path.

Let γ_{1} be the circle of radius $1 / 2$ around the center $z=1$ and γ_{0} the circle of radius $1 / 2$ around $z=0$; both are oriented in the positive direction. We will consider them as elements of $\pi_{1}\left(C_{0} ; 1 / 2\right)$. Let γ_{-1} be the cycle that starts at the point $1 / 2$, moves along the upper semi-circle of γ_{0}, then goes on the circle of radius $1 / 2$ around the point -1 and finally returns to the point $1 / 2$ traveling the same upper half of γ_{0}. Note that $\pi_{1}\left(C_{0} ; 1 / 2\right)$ is a free group generated by γ_{-1}, γ_{0} and γ_{1}.

We now write (1.2) in the following form:

$$
\left(M(z)^{-1}, i M(1+z, 1-z)^{-1}\right)=(\sqrt{\lambda} / \pi)\left(u_{1}(\lambda), u_{2}(\lambda)\right),
$$

where $\lambda=\lambda(z)=\left(1-z^{2}\right)^{-1}$ and

$$
u_{1}(\lambda)=\int_{0}^{1} \frac{d x}{y(\lambda)}, \quad u_{2}(\lambda)=\int_{0}^{-\infty} \frac{d x}{y(\lambda)}
$$

with $y(\lambda)^{2}=x(1-x)(\lambda-x)$.

The map $\lambda(z): C_{0} \rightarrow C_{1}:=C \backslash\{0,1\}$ induces the map $\lambda_{*}: \pi_{1}\left(C_{0} ; 1 / 2\right) \rightarrow$ $\pi_{1}\left(C_{1} ; 4 / 3\right)$. We then have

$$
\lambda_{*} \gamma_{0}=\delta_{1}^{2}, \quad \lambda_{*} \gamma_{1}=\delta_{\infty}^{-1}, \quad \lambda_{*} \gamma_{-1}=\delta_{1}^{-1} \delta_{\infty}^{-1} \delta_{1},
$$

where δ_{1} and δ_{∞} are cycles $\in \pi_{1}\left(C_{1} ; 4 / 3\right)$ defined as follows: δ_{1} moves once around the point 1 (but not 0) and δ_{∞} moves once around the points 0 and 1 , both in the positive direction.

We are now concerned with what happens to u_{1} and u_{2} when λ moves along the cycle δ_{1} or δ_{∞}. This actually corresponds to the question of a monodromy representation of a Legendre equation,

$$
\lambda(\lambda-1) u^{\prime \prime}+(2 \lambda-1) u^{\prime}+(1 / 4) u=0,
$$

since u_{1} and u_{2} form a fundamental system of the equation. However, we do not need this fact here. A continuous variation of the paths of integration for u_{1} and u_{2} in accordance with the move of λ leads to

$$
\begin{array}{rlrl}
\delta_{1 *}\binom{u_{1}}{u_{2}}=U^{-1}\binom{u_{1}}{u_{2}}, & U=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \\
\delta_{\infty *}\binom{u_{1}}{u_{2}} & =V\binom{u_{1}}{u_{2}}, & V=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) .
\end{array}
$$

Therefore, all

$$
\gamma_{*}\left(M(z)^{-1}, i M(1+z, 1-z)^{-1}\right), \quad \gamma \in \pi_{1}\left(C_{0} ; \frac{1}{2}\right)
$$

are obtained by the action of the subgroup Γ (of $S L_{2}(Z)$) generated by

$$
U^{2}, V \quad \text { and } \quad U^{-1} V U
$$

Now, we define $\Gamma_{2}(4)$ as the group of matrices

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \quad \text { of } \quad S L_{2}(Z)
$$

such that $p \equiv s \equiv 1(\bmod 4), q \equiv 0(\bmod 4)$ and $r \equiv 0(\bmod 2)$. The last part of our proof is devoted to proving $\Gamma=\Gamma_{2}(4)$. Our theorem is an immediate consequence of this, since the set of the first rows of the matrices of $\Gamma_{2}(4)$ equals
$\{(p, q) ; p$ and q are relatively prime, $p \equiv 1(\bmod 4)$ and $q \equiv 0(\bmod 4)\}$.

References

[1] Cox, D.: The arithmetic-geometric mean of Gauss. L'Enseignement Math., 30, 275-330 (1984).
[2] -: Gauss and the arithmetic-geometric mean. Notices of the AMS, 32, 147151 (1985).
[3] von David, L.: Arithmetisch-geometrisches Mittel und Modulfunktion. J. Reine Angew. Math., 159, 154-170 (1928).
[4] Geppert, H.: Zur Theorie des arithmetisch-geometrischen Mittels. Math. Ann., 99, 162-180 (1928).

