87. The Period Map of a 4-parameter Family of K3 Surfaces and the Aomoto-Gel'fand Hypergeometric Function of Type $(3,6){ }^{\text {t) }}$

By Keiji Matsumoto,*) Takeshi Sasaki,**) and Masaaki Yoshida*)
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1988)

We show that one of Aomoto-Gel'fand hypergeometric functions ([4]) can be interpreted as the period map of a 4-dimensional family of $K 3$ surfaces, of which the target is the 4 -dimensional Hermitian symmetric bounded domain of type IV. The corresponding system of differential equations has six linearly independent solutions which are quadratically related. (Such systems are recently studied in [10].) This fact confers an algebro-geometric decoration to the Aomoto-Gel'fand functions as the relation between the elliptic modular function and the corresponding equation does to the Gauss hypergeometric function. Details will be given in [6].

We describe a family of $K 3$ surfaces. Let

$$
l_{j}=\left\{\left(t^{1}, t^{2}, t^{3}\right) \in \boldsymbol{C} P^{2} \mid v_{1 j} t^{1}+v_{2 j} t^{2}+v_{3 j} t^{3}=0\right\} \quad(0 \leqq j \leqq 6)
$$

be six lines in general position in the complex projective plane $C P^{2}$ with homogeneous coordinates $\left(t^{1}, t^{2}, t^{3}\right)$ and let $S(l)$ be the minimal smooth model of the two-fold cover $S^{\prime}(l)$ of $C P^{2}$ branching along the line configuration $l=\left\{l_{1}, \cdots, l_{6}\right\}$. For a fixed l, the surface $S(l)$ is a $K 3$ surface, i.e., there is a unique holomorphic 2-form

$$
\begin{equation*}
\eta(l)=\prod_{j=1}^{6}\left(v_{1 j} s^{1}+v_{2 j} s^{2}+v_{3 j}\right)^{-1 / 2} d s^{1} \wedge d s^{2} \tag{1}
\end{equation*}
$$

up to constant multiplication, and the rank of the second homology group $H_{2}(S(l), Z)$ is 22 . In this case, there are 16 linearly independent cycles; 15 exceptional curves coming from the 15 double points of $S^{\prime}(l)$ and a section when considered $S(l)$ as an elliptic surface over $C P^{1}$. We can take a system $\gamma_{1}^{\prime}(l), \cdots, \gamma_{6}^{\prime}(l) \in H_{2}(S(l) Z)$ of six (transcendental) cycles orthogonal to the algebraic cycles such that there exists another system $\gamma_{1}(l), \cdots, \gamma_{6}(l) \in$ $H_{2}(S(l), \boldsymbol{Z})$ which is dual to $\gamma_{j}^{\prime}(1 \leqq j \leqq 6)$, i.e., $\gamma_{i}^{\prime} \cdot \gamma_{j}=\delta_{i j}$ (Kronocker's symbol) and that its intersection matrix $\left(\gamma_{i}^{\prime} \cdot \gamma_{j}^{\prime}\right)(1 \leqq i, j \leqq 6)$ takes the fixed form $I=\left(I_{i j}\right)$, which is symmetric, integral and with the signature ($2+, 4-$). The vector $\omega(l)=\left(\omega_{1}(l), \cdots, \omega_{6}(l)\right)$, where $\omega_{j}(l)=\int_{r_{j}(l)} \eta(l)(1 \leqq j \leqq 6)$, is called the period of $S(l)$ and it satisfies the Riemann relation and the Riemann inequality as follows

$$
\begin{align*}
& \sum_{i, j} I_{i j} \omega_{i}(l) \omega_{j}(l)=0 \tag{2}\\
& \sum_{i, j} I_{i j} \omega_{i}(l) \bar{\omega}_{j}(l)>0 .
\end{align*}
$$

${ }^{\text {t) }}$ Dedicated to Professor Hisasi Morikawa on his 60th birthday.
*) Department of Mathematics, Kyushu University.
**) Department of Mathematics, Kumamoto University and Brown University.

Now we let l vary in the space M of configurations of six projective lines and let the cycles $\gamma_{j}(l)$ depend continuously on l. Then the correspondence sending l to the ratio $\omega_{1}(l): \cdots: \omega_{6}(l)$ gives a multi-valued map $\varphi: M \rightarrow Q$ $\subset C P^{5}$ where $Q=\left\{\left(z^{1}, \cdots, z^{6}\right) \in C P^{6} \mid \sum_{i, j} I_{i j} z^{i} z^{j}=0\right\}$. The multi-valuedness of φ is expressed by a subgroup of $\Gamma=\left\{\left.X \in G L(6, Z)\right|^{t} X I X=I\right\} /\{ \pm 1\}$. If we express elements of the space M by a 3 by 6 matrix ($v_{i j}$) $(1 \leqq i \leqq 3,1 \leqq j \leqq 6)$ then the map φ is invariant under the action of $S L(3, C)$ on the left and the action $H=\left(C^{\times}\right)^{6}$ from the right. Therefore φ is defined on the 4-dimensional factor space $X=S L(3,6) \backslash M / H$. Let us choose, for example, a system of local coordinates $\left(x^{1}, \cdots, x^{4}\right)$ of X as follows:

$$
\left(v_{i j}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & x^{1} & x^{2} \\
0 & 0 & 1 & 1 & x^{3} & x^{4}
\end{array}\right)
$$

i.e.
(4) $\quad l_{1}=\left\{t^{1}=0\right\}, \quad l_{2}=\left\{t^{2}=0\right\}, \quad l_{3}=\left\{t^{3}=0\right\}, \quad l_{4}=\left\{t^{1}+t^{2}+t^{3}=0\right\}$,

$$
l_{5}=\left\{t^{1}+x^{1} t^{2}+x^{3} t^{3}=0\right\}, \quad l_{8}=\left\{t^{1}+x^{2} t^{2}+x^{4} t^{3}=0\right\} .
$$

Then by the theory developed in [10], there is a system of linear differential equations

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}=g_{i j} \frac{\partial^{2} u}{\partial x^{1} \partial x^{4}}+\sum_{k=1}^{3} a_{i j}^{k} \frac{\partial u}{\partial x^{k}}+a_{i j}^{0} u, \quad 1 \leqq i, j \leqq 6 \tag{5}
\end{equation*}
$$

of rank ($=$ dimension of the solution space) six such that the ratio of a system of linearly independent solution (called a projective solution) is exactly φ, that the quadratic form $g=\sum_{i, j} g_{i j} d x^{i} d x^{j}$ is conformal to the pull back of the canonical flat conformal structure on $Q \subset C P^{5}$ and that other coefficients $a_{i j}^{k}$ and $a_{i j}^{0}(1 \leqq i, j, k \leqq 6)$ are determined by g.

Here we recall the framework of the Aomoto-Gel'fand hypergeometric differential equation associated with the Grassmannian $G_{3,6}$ and see that our system (5) is its special case. Let $M(k, n)$ be the set of k by n matrices $v=\left(v_{i j}\right)$ and consider the integral

$$
\begin{equation*}
\Phi(v)=\int_{\Delta} \prod_{j=1}^{n}\left(\sum_{i=1}^{k} v_{i j} t^{i}\right)^{\alpha_{j}-1} d t \tag{6}
\end{equation*}
$$

where Δ is a region of the ($k-1$)-dimensional sphere $S^{k-1} \subset \boldsymbol{R}^{k}$ and $d t$ is the induced measure of the standard measure of the Euclidean space \boldsymbol{R}^{k} onto S^{k-1} and $\sum_{j=1}^{n} \alpha_{j}=n-k$. The function $\Phi(v)$ is invariant under the action of $S L(k, C)$ from the left and the action of $H_{n}=\left(C^{\times}\right)^{n}$ from the right so that it satisfies

$$
\begin{equation*}
\sum_{i=1}^{k} v_{i j} \frac{\partial}{\partial v_{i j}} \Phi=\left(\alpha_{j}-1\right) \Phi \quad\left(H_{n} \text {-invariance }\right) \tag{7}
\end{equation*}
$$

for $1 \leqq j \leqq n$ and

$$
\begin{equation*}
\sum_{j=1}^{n} v_{i j} \frac{\partial}{\partial v_{k j}} \Phi=-\delta_{i}^{k} \Phi \quad(S L(k, C) \text {-invariance }) \tag{8}
\end{equation*}
$$

for $1 \leqq i, k \leqq k$. Important equalities are

$$
\begin{equation*}
\frac{\partial^{2}}{\partial v_{i p} \partial v_{j q}} \Phi=\frac{\partial^{2}}{\partial v_{i q} \partial v_{j p}} \Phi \tag{9}
\end{equation*}
$$

for $1 \leqq i, j \leqq k, 1 \leqq p, q \leqq n$. The system of linear differential equations (7), (8) and (9) is called the Aomoto-Gel'fand hypergeometric equation of type (k, n) ([1] and [3]) and denoted by $E\left(k, n ; \alpha_{1}, \cdots, \alpha_{n}\right)$. It is a holonomic system, that is, its rank is finite. The systems $E\left(2,4 ; \alpha_{1}, \cdots, \alpha_{4}\right)$ and $E\left(2, n ; \alpha_{1}, \cdots, \alpha_{n}\right)(n \geqq 5)$ can be naturally considered, respectively, to be the Gauss hypergeometric equation and the Appell-Lauricella hypergeometric system F_{D} in $\mathrm{n}-3$ variables.

The system $E\left(3,6 ; \alpha_{1}, \cdots, \alpha_{6}\right)$ reduces to the following system with unknown u if one uses the independent variables x^{1}, \cdots, x^{4} appeared in the normalization (4).

$$
\begin{aligned}
& \left(\alpha_{2}+\alpha_{3}+\alpha_{4}-1+\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \theta_{1} u=x^{1}\left(\theta_{1}+\theta_{3}+1-\alpha_{5}\right)\left(\theta_{1}+\theta_{2}+\alpha_{2}\right) u \\
& \left(\alpha_{2}+\alpha_{3}+\alpha_{4}-1+\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \theta_{2} u=x^{2}\left(\theta_{2}+\theta_{4}+1-\alpha_{6}\right)\left(\theta_{1}+\theta_{2}+\alpha_{2}\right) u \\
& \left(\alpha_{2}+\alpha_{3}+\alpha_{4}-1+\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \theta_{3} u=x^{3}\left(\theta_{1}+\theta_{3}+1-\alpha_{5}\right)\left(\theta_{3}+\theta_{4}+\alpha_{3}\right) u \\
& \left(\alpha_{2}+\alpha_{3}+\alpha_{4}-1+\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \theta_{4} u=x^{4}\left(\theta_{2}+\theta_{4}+1-\alpha_{6}\right)\left(\theta_{3}+\theta_{4}+\alpha_{3}\right) u
\end{aligned}
$$

where $\theta_{i}=x^{i} \partial / \partial x^{i}$. This system can be written in the form of (5) as follows:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}=G_{i j} \frac{\partial^{2} u}{\partial x^{1} \partial x^{4}}+\sum_{k=1}^{3} A_{i j}^{k}(\alpha) \frac{\partial u}{\partial x^{k}}+A_{i j}^{0}(\alpha) u, \tag{10}
\end{equation*}
$$

$1 \leqq i, j \leqq 6$. The coefficients $G_{i j}=G_{j i}$'s of the principal part are independent of the α_{j} 's and are given as follows:

$$
\begin{aligned}
& G_{12}=\frac{x^{4}-x^{3}}{x^{1}-x^{2}}, \quad G_{13}=\frac{x^{4}-x^{2}}{x^{1}-x^{3}}, \quad G_{24}=\frac{x^{3}-x^{1}}{x^{2}-x^{4}}, \quad G_{34}=\frac{x^{2}-x^{1}}{x^{3}--x^{4}}, \\
& G_{11}=\frac{x^{2} x^{3}-x^{4}}{x^{1}\left(1-x^{1}\right)}-\frac{x^{3}\left(x^{4}-x^{2}\right)}{x^{1}\left(x^{1}-x^{3}\right)}-\frac{x^{2}\left(x^{4}-x^{3}\right)}{x^{1}\left(x^{1}-x^{2}\right)}, \\
& G_{22}=\frac{x^{1} x^{4}-x^{3}}{x^{2}\left(1-x^{2}\right)}-\frac{x^{1}\left(x^{3}-x^{4}\right)}{x^{2}\left(x^{2}-x^{1}\right)}-\frac{x^{4}\left(x^{3}-x^{1}\right)}{x^{2}\left(x^{2}-x^{4}\right)}, \\
& G_{33}=\frac{x^{1} x^{4}-x^{2}}{x^{3}\left(1-x^{3}\right)}-\frac{x^{1}\left(x^{2}-x^{4}\right)}{x^{3}\left(x^{3}-x^{1}\right)}-\frac{x^{4}\left(x^{2}-x^{1}\right)}{x^{3}\left(x^{3}-x^{4}\right)}, \\
& G_{44}=\frac{x^{2} x^{3}-x^{1}}{x^{4}\left(1-x^{4}\right)}-\frac{x^{3}\left(x^{1}-x^{2}\right)}{x^{4}\left(x^{4}-x^{3}\right)}-\frac{x^{2}\left(x^{1}-x^{3}\right)}{x^{4}\left(x^{4}-x^{2}\right)}, \quad G_{14}=G_{23}=1 .
\end{aligned}
$$

On the other hand, it is clear from the representations (1) and (6) that our system (5) is equivalent to the system (10) ${ }_{\alpha}$ with $\alpha_{j}=1 / 2$ for $1 \leqq j \leqq 6$. Therefore we know that the coefficients $g_{i j}$ of (5) are equal to $G_{i j}$, so that the quadratic form $g=\sum_{i, j} G_{i j} d x^{i} d x^{j}$ is conformally flat.

The algebro-geometric interpretation of the system $E(3,6 ; 1 / 2, \cdots, 1 / 2)$ given above shows that the system $E\left(3,6 ; \alpha_{1}, \cdots, \alpha_{6}\right)$, out of many systems $E\left(k, n ; \alpha_{1}, \cdots, \alpha_{n}\right)(k \geqq 3)$, is a valuable analogy of the Gauss hypergeometric equation that has the fruitful relation with the elliptic modular function. To conclude this paper, we list up the correspondence between our situation of $K 3$ surfaces and the situation of elliptic curves: (a) Configuration l of six lines in $C P^{2} \leftrightarrow$ System of four points $p=\left(p_{1}, \cdots, p_{4}\right)$ on $C P^{1}$. (b) $K 3$ surface $S(l) \leftrightarrow$ Elliptic curve $E(p)$ obtained by the two fold cover of $C P^{1}$ branching at p. (c) Holomorphic 2-form $\eta(l)$ on $S(l) \leftrightarrow$ Holomorphic 1-form $\eta(p)$ on $E(p)$. (d) Transcendental cycles $\gamma_{i}^{\prime}(l) \in H_{2}(S(l), Z) \leftrightarrow$ Standard basis
$\gamma_{1}(p)$ and $\gamma_{2}(p)$ of $H_{1}(E(p), Z)$. (e) Intersection form I of the $\gamma_{i}^{\prime}(l)$'s \leftrightarrow Intersection form $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ of $\gamma_{1}(p)$ and $\gamma_{2}(p)$. (f) Periods $\omega_{i}(l)=\int_{r_{i}(l)} \eta_{i}(l) \leftrightarrow$ Periods $\omega_{i}(p)=\int_{r_{i}(p)} \eta_{i}(p)$. (g) The Riemann inequality (2) $\leftrightarrow \operatorname{Im} \omega_{1}(p) / \omega_{2}(p)$ >0. (h) Period map $\varphi: l \rightarrow \omega(l) \in Q \leftrightarrow$ Period map $p \rightarrow \omega_{1}(p) / \omega_{2}(p) \in H=\{z \in \boldsymbol{C} \mid$ $\operatorname{Im} z>0\}$. (i) Group $\Gamma \leftrightarrow$ Group $P S L(2, Z)$. (j) System $E(3,6 ; 1 / 2, \cdots, 1 / 2)$ \leftrightarrow System $E(2,4 ; 1 / 2, \cdots, 1 / 2)$. (k) System (5) under the normalization (4) \leftrightarrow The hypergeometric differential equation $x(1-x) u^{\prime \prime}+(1-2 x) u^{\prime}-(1 / 4) u$ $=0$ under the normalization $p_{1}=0, p_{1}=\infty, p_{3}=1, p_{4}=x$.

Note. Such correspondence can be also found using various families of curves of higher genera in place of $K 3$ surfaces, which are studied in [2], [5], [10] and [11].

Acknowledgements. The authors are grateful to Prof. Takayuki Oda for his kind advice and to Prof. Kazuhiko Aomoto for having valuable discussions.

References

[1] K. Aomoto: On the structure of integrals of power product of linear functions. Sci. Papers Coll. Gen. Ed. Univ. Tokyo, 27, 49-61 (1977).
[2] P. Deligne and G. D. Mostow: Monodromy of hypergeometric functions and nonlattice integral monodromy. I.H.E.S. Publication Math., no. 63, 5-106 (1986).
[3] I. M. Gel'fand: General theory of hypergeometric functions. Soviet Math. Dokl., 33, 573-577 (1986).
[4] I. M. Gel'fand and M. I. Graev: Hypergeometric functions associated with the Grassmannian $G_{3,6}$. ibid., 35, 298-303 (1987).
[5] K. Matsumoto: On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3 (preprint).
[6] K. Matsumoto, T. Sasaki, and M. Yoshida: On the Aomoto-Gel'fand hypergeometric differential equation of type (3,6) (in preparation).
[7] S. Nishiyama: Appell's hypergeometric function F_{2} and periods of certain elliptic K3 surfaces. Tokyo J. of Math., 10, 33-67 (1987).
[8] T. Sasaki: Contiguity relations of Aomoto-Gel'fand hypergeometric functions and their application to Appell's system F_{3} (in preparation).
[9] T. Sasaki and M. Yoshida: Linear differential equations in two variables of rank four. I, II (1988) (to appear in Math. Ann.).
[10] -_: Linear differential equations modeled after hyperquadrics (to appear in Tôhoku Math. J.).
[11] T. Terada: Fonctions hypergeometriques F_{1} et fonctions automorphes. I. J. Math. Soc. Japan, 35, 451-475 (1983).
[12] M. Yoshida: Fuchsian Differential Equations. Vieweg-Verlag, Wiesbaden (1987).

