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Let K be a finite extension of the rational number field @ and L a finite
abelian extension of K. For a subextension M of L/K, we denote by E
(resp. W) the group of units of M (resp. the group of roots of unity in M)
and define K, c={c € E; | Ny, re € Wy for all subextensions F'=M of M/K},
where N, is the norm map from M to F. The elements of E,, are called
relative units of M over K. Weput Ey=FE W, /W,~E ]/ Wy. In this
note we shall prove

Theorem. Let I denote the set of cyclic subextensions of L|K.

(1) (ELWIOERCT] yeau Ex and the product [] is direct.

(ii) Letr,, 7, be the numbers of real and complex places of K, respec-
tively, and Z the ring of rational integers. For M e M, let r* denote the
number of real places of K which are unramified in M and let O, denote
the ring of integers of the [M: K]-th cyclotomic field. Then &y is an Oy-
module. Moreover,

Znn if M=K,
SM:{O if M=K and r¥ +7r,=0,
O nI@Uy  if M#K and 1 +1,>0,

where W, is a non-zero ideal of O,.

This theorem has been proved in [3] and [2] if K=, in [5] and [4] if
K is an imaginary quadratic field.

The author wishes to thank Dr. K. Nakamula for his kind advice.

§1. Preliminaries. Let G be an abelian group of finite order n. Let
QIG] (resp. Z[G]) denote the group ring of G over @ (resp. Z). Let 4 denote
the set of @-irreducible characters of G. For 2e 4, we denote G,={s € G|
Ao)=21)}, n,=[G: Gl and 4,={pec 4|G,=SG,}. We define

el=l ST Do e lz[G]C_;_Q[G] and s,= >, ocecZI[G].
N o¢ed n gEG)

It is easy to see that e}=e,, €e,e,=0 (A%, > c.e,=1 and
(1) =2 e,

Let A be a G-module. Let A=A/TA, where TA is the Z-torsion part of
A, and let [: A—A denote the canonical surjective G-homomorphism. We
note that 4 can be embedded into the Q[Gl-module 4,=A®,Q and that
Ag=®c16,44. For 2e 4, we denote A*={a c A|ga=qa for all ¢ € G;}; then
for a ¢ A* we have
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(2) l(@) e {xe Ag|ox=2x for all s € G,}=5,44= gle,,AQ.
Further we define ’
Al={a e A*|l(a) € €,Aq}.

Proposition. (i) nAZ>,.,(AD and the sum Y, is direct.

(ii) Al={a e A*|l(5,0)=0 for all pe A,\{2}}.

(iii) Let O, denote the ring of integers of the n,-th cyclotomic field ;
then (A} is an O,-module.

Proof. (i) For ac A, we have na=>,.,t.a where t,=ne, c Z[G].
Since (1) implies t,=mn,¢;s;, we have t,o=t, for all ¢ € G,. Therefore t,a € A}
and nACS > ., (AY. As [(A)Se,Ag, the sum Y is direct.

(ii) For a € A, we have from (1) and (2) that

l(a) € ;Ag&=e,l(a)=0 for all pe 4,\{2}
&l(s,0)=s,l(a)=0 for all xe 4,\{2}.

(iii) By definition ((4}) is an ¢,Z[G]-module and we know that ¢,Z[G]
~O, (cf. [2], §1I, 2).

§2. Proof of Theorem. Wetake G=Gal(L/K)and A=FE,. Forae 4,
we denote by L, the fixed field of G,; then A*=FE;,. Hence (ii) of Proposi-
tion implies that Aj={ee '[N, cec W,, for all pe 4,\{2}}. Since {L,|
pre L\{(A}}={F|KSFZL,}, we have A{=FE . and [(AD=E,,. As{L,|2¢ 4}
=M, (1) of Proposition proves (i) of Theorem, and (iii) of Proposition says
that &, is an Oy,-module for M ¢ 9. Dirichlet’s unit theorem says &y
~zmn* -1 Hereafter we assume M+K and put k=[M:K]. Let cc &y,
o e O, such that e*=1; then ¢*=1 where No is the absolute norm of o.
As &, is Z-torsion free, we have e=1. It implies that &, is O,-torsion
free. We denote by 7, (resp. r,) the Z-rank of &, (resp. £,/ Wy). By
(i) of Theorem we have

ry= 2 "'F/K':dZ”C:TMd/Ka

KEFEM
where M, is a unique subextension of M /K of degree d. The number of
real places of K which ramify in M, is »,—r# or 0 according as k/d is odd
or even. We denote by x the Mobius’s function and by ¢ the Euler’s func-
tion; then

o
Tax= 2, ﬂ(ic‘)TMa: 2 ﬂ(lc‘){( nheh ‘I‘/"{K‘F?"z)d—l}
W \d k/di0da 2

d
+ = y(%){(m—r{urrwz)d—l}

dlk
k/d:even

=(r— rff)(%sl +SZ) O F 4 ro(R),

where

&=24ded&=zy@ﬂ
aTk d ark
k/d:odd k/d:even

If & is odd then r¥ =7, if k is even then

_ kN, 2k\d _ 1
S= 2 w(5)i= 5 w(B)S=—1s.

2llk/a k/d:odd
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Consequently

T x={" +7'z)$0(k)-

On the other hand the Z-ranks of O, and %, are ¢(k). Therefore Proposi-
tion 24 of [1] proves (ii) of Theorem.
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