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84. Zeta Zeros and Dirichlet L-functions. II

By Akio FuJit
Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

We shall extend the investigations in [2] further. Let 7 run over the
positive imaginary parts of the zeros of the Riemann zeta function {(s).
We are concerned with the distribution of b(r/2z)log (¥/2nex) mod one.
When b>>1, the problem seems to be very difficult and our knowledge seems
to be very scarce except our Theorem 5 below and a simple consequence of
theorem in [1] with the help of Pjateckii-Sapiro’s theorem in [4]. In this
article we shall show that even the case for 0<b=<1 involves also the diffi-
culty which lies as deep as the Generalized Riemann Hypothesis (G.R.H.) for
Dirichlet L-functions L(s,X). We assume the Riemann Hypothesis below.

We start with recalling the following fundamental theorem which is
a special case of our main theorem in [1].

Theorem 1. Let K be an integer =1 and let T>T,. Then for any
positive «,
> e( 4 IOg( 7 >) =—eWr /4 K 3T A(n)e( — an®)nt/» &=

<r \2zK 2rea K n<(T /oKUK
+0(T >+ 2B (Jog T -log log T)*) +0(v' T log*T),

where we put e(x)=-e***, A(x)=Ilogp if x=p* with a prime number p and
an integer k=1 and A(x)=0 otherwise.

When « is rational, we get the following corollary using the prime
theorem in the arithmetic progressions.

Corollary 1. Let K be an integer =1 and let T>T,. Then for any
integers a and =1 with (a, Q)=1, we have

T T o o
l ( )) . (1/4)71’50(___, K) T 2 1/2) 1+ (1/K))
2 e(an g 7o ¢ . &) T2

1<r 2re(e/q)
+0(T @0+ w5 exp (—Cy/'log T)),
where we put C(a/q, K)=2K"»¢-4"§(a/q, K)(K+1)"'¢p(q)*(a/Q)~"** and
S(a/q, K)=2i_,e((a] )b¥), the dash indicates that b satisfies (b,q)=1, C
denotes some positive constant and ¢(q) is the Euler function.

When « is irrational, using the estimate due to Vinogradov of
> ncy Am)e(an®) (cf. [6] and also Lemma 2 in [3]), we get the following cor-
ollary to Theorem 1 and Corollary 1, which has been mentioned only for
the case for K=1 (cf. Corollary 5 in [1]).

Corollary 2. Let K be an integer =1. Then we have

; — /D A+ WEY) r r
tm (T/2m) 2 e(an log <27ceaKg>>
={—e““””0(a/q, K) if a=a/q with integers a and ¢=1 and (a, ¢)=1
0 if « 18 trrational.
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It is of great interest to determine the true order of the magnitude of
the remainder term in Corollary 1. In fact, we obtain the following theo-
rem immediately from Theorem 1.

Theorem 2. Let q be an integer =3. Suppose that K is an integer
=>5. Then G.R.H. for all L(s, XX) with a character Xmod q is equivalent to
the relation

r ___oammpnf @ (1/2) A+ (1/K)) 1/2+¢
2 e(zﬂK o8 <zue(a/ Q)K))_ ¢ C(? K>(T/ 2r) +OT)
for any positive e and any integer a with 1<a<q and (a, ¢)=1.

Proof. Suppose first that the above relation is correct. Then using
Theorem 1, we get for any character Xmod ¢,

> A(n)XK(n)n“/Z)(K")

n<lY
T Z /1( )(Z/ ( %nK>z(a)),n(1/2)(K—l)'_l_O(Y(l/Z)(K—l) log Y)

T X) <Y

- Wy R {C)) ( 7 ( 7 ))
R A/4)nt K X 1 ’ Nt 1
¢ V'a (K<) aZ=:1 a r<yx§a/q>xe 2K o8 2re(a/ K
+0(Y DX Jog*Y)

—2((K -+ 1);0((1)@)“ ai::l/ Z(a)S(%, K)y(mmn/z 4 O(YomEre),

where we put z(0)=>_"¢_, 2(a)e(a/q).
Hence, we get

3 4@ = Ge() i’x(T)s(i‘-, K)Y+0(Y*ﬂ+£>

_ {Y+O(Y"“8) if 2¥=YX,=the principal character mod q
—lo(yete) otherwise.

This implies G.R.H. for all L(s,x*). To prove the converse, we notice

only that

x A(n)e( : nK)———— S @)@ T Awrt),

where X runs over all characters modq. Q.E.D. of Theorem 2.

We remark that this theorem should hold also for 1<K<4. To get
this we have only to get rid of the term 0(T#»* @25 (log T -log log T)**) from
Theorem 1, where (2/5)+(1/2K)<(1/2) if K=5.

We turn our attentions to an infinite series involving e(7/2zK
-log (r/Ke)). As an application of the above Corollary 1, we get imme-
diately the following theorem.

Theorem 3. Let K be an integer =1. Let a and q be integers satis-
fying 1<a<q and (a, Q)=1. Then

5 e( T log( T ))e—n/zxr(l/m((x/m—n(x+ 2,1-7;&)“(1/10((1/2)”7)
3 2rK Ke q

=— C<—q—, K)x"/"+0(x“”" exp (—C+Iog (1/2))) as x—>+0,

where we put
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C(_‘i, K) = Wi /K) <1>K<1/2><<1/K>~‘>(J??;go(q))'ls<i, K)
q K q
and ['(s) is the '-function.
It is again of great interest to determine the true order of the magni-

tude of the remainder term of the above theorem. We can, in fact, show
the following theorem.

Theorem 4. Let K be an integer =1. Let q be an integer =3. Then
G.R.H. for all L(s, x*) with a character X mod q is equivalent to the relation

7 v _ ~ o\~ W@+
e ~* lo <—>>6 Tn/ZKT(l/Z)((l/K) 1)(90 2 'L——-)
- <2nK E\&e +2ni

=—C‘(£, K)x'”K—i—O(x'”“‘“E) as —>+0
q
for any positive ¢ and for any integer a with 1<a<q and (a, ¢)=1.

Proof. By evaluating the integral 1/2xi f”w €[OI K)y—*ds in
2—jo0

two ways and replacing y* by x+2ri(a/q) with a sufficiently small positive
x, we get as x— -0,

f: A(n)e‘""”e(— ﬁn") S o r (£>(x+27ri 9—>_le +0Q1),

n=2 q K 4 K q
where p runs over (1/2)+4r and (1/2)—¢r. By the Stirling’s formula, the
right hand side is

— QUMD - UM () /S 5 e( r 10g< T ))e—ra/mr(lm«ux)—l)
T 2zK Ke

X (x+2m’ ﬂ) - (1/K)((1/2) +i1) + O(Z PRL S IUDI SR
q 7

(x + 271 _f“_) - (/K ((1/2) +7)
q

)-

The last term is seen to be 0(x~¢) as x—-+0. Suppose first that G.R.H.
holds for all L(s, ¥*) with a character Xmod q. Then for any (a, ¢)=1,

2}2 A(n)e“""”e(— %n")

I

L r e"v" e d( 3, Amx*(n)
SD(Q) x 1 n<ly

L szmne r e~V dy +0(x~ 00~¢)
90((1) x 1

1 > ) u) (l)K“x"/K—l—O(x'<1/2K>-e),

(@) % K

where the double dash indicates that X satisfies x**=X,. Conversely, assume

the last asymptotic formula for any (a,q)=1. Then for any character
X mod q,

%’(Ks, 15) = — (I'(8) D))" i' 1) j ’ (iz A(n)e'"K”e(— %n"))x“‘dm

I

=1 (3 )T @igta) T 003 1 @@ ) [ a7t
+G(3),
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where 5 is a sufficiently small positive number and G(s) is regular for
Re(s)>1/2K. Thus we see that (L’/L)(Ks, x¥) is regular for Re (s)>1/2K
except when Ks=1 and x*=Y,. Since > z(0)x(a)=S(a/q, K), by Lemma 1
of [2], we get our Theorem 4. Q.E.D.
This gives us a generalization of Sprindzuk’s theorem, namely, for the
case when K=1, in [5]. On the other hand, we may recall that we have
extended Sprindzuk’s theorem in another direction as follows, where we
shall correct the statement of Theorem 2 for K>3 in [2] on this occasion.
Theorem 5. Let q be an integer =8. Let K be an integer =2. Then
G.R.H. for all L(s,X) with a character X mod q is equivalent to the relation

> e(ﬁ log (ﬁ))e—(1/2);:71(7’(1/2)(1(-1)(x..}.zni_‘z’_)_m(m)”r)(l —I—é—% s '*‘A;‘))
7 2r e q T T¥0

+B(K) %Z_1 Zlogﬂe‘”"’”‘e(—-ipd”‘)
K p q

d=1,d%

= __I_B(K)M_l_o(x—(lﬂ)—s)
x o(@
as x—+0 for any positive ¢ and for any integer a with 1<a<q and (a, q)
=1, where B(K)=2g) '? K- ¢ME+hg-tmmE-0" K =[(1/2)(K—1)]if K=3, A,,
<+, A arethe constants which may depend on K, A= - - - =A, =0if K=2,
D runs over the primes and p(q) is the Mobius function.
We remark that 4,, - - - and A, can be written down explicitly.
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