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This is continued from [0].

Proof of Theorem 2. Let acK and put K'=K—a. Then K+K=
KoK means K'+K'=K'-K’, |K'|=k, |K'cK'|=m. We have 0eK’, and
“K+K is a coset of a subgroup of G” means “K’-+K’ is a subgroup of G”.
So rewriting K for K’, Theorem 2 can be reformulated as follows.

Theorem 2. Let 0e K and suppose K+ K=Ko.K. If 2m<3k, then
KK is a subgroup of G.

The proof of this theorem depends on the following

Theorem of Kneser ([1], see Mann [2, p. 6]). For any complexres A, B
of G, there exists a subgroup H of G such that A+B=A+B+H and |A+B|
>|A+H|+|B+H|—|H|.

For A=B=K, we obtain a subgroup H such that K+ K=K+K+H
and |[K+K|>2|K+H|—|H|. If 2m<3k, we have m=|K+K|<(@3/2)k<
(8/2)|K+H|, and so 2|H|>|K+H|. As K+K=K+K+H, we have K-+K
DH. If (K+K)\H+®, there should be z, ¥ € K such that x+y ¢ H. Then
z or ye H. Suppose xe¢ H. Then K+HD(x+H)UH and |K+H|>2|H|.
Thus K+ K=H.

Remark. If G=Z/pZ, p being a prime, then K+ K=G or |K+K|>
2|K|—1. This follows from the theorem of Kneser or from Cauchy-
Davenport’s theorem (see Mann [2, p. 3]).

Let G be any other abelian group than Z|pZ and H a non-trivial sub-
group of G (i.e. H#{0}, H¥G®). Put K=HU(x+H), 2¢x ¢ H. Then |K+K]|
=(8/2)|K]|, so that 8/2 in (ii) can not be replaced by a smaller number.

Since Ko K+K+K, in order to prove Theorem 3 we may suppose K
satisfies (0). Moreover we may prove Theorem 3 for K with the following
maximality property: there is no s ¢ G\K such that

(%) (B U{sD o (KU {sPI<|K o K|+1.

In fact, if there exists s ¢ G\K which satisfies (x), then K’=K U {s} satisfies
(0) and if Theorem 3 is proved with respect to K’, then the inequality also
holds true for K.

Lemma 4. If |G| is odd, K satisfies (0) and there is no s e G\K which
satisfies (x), then |K*|<m—k+3 for every we (Ko K)\K.

Proof. Suppose |K”|>m—k+4 for some we (Ko K)\K. Put K=
{veK\{z,0}|z+y e K} for z (+0)eK, then K,—~KNK,, y—2+y is a
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bijection. Thus |K”|+|K,|=|K*|+|KNK, |>m—k+4+2k—3—m=Fk+1,
in virtue of what we noticed just before Lemma 2. Therefore |[K*NK,,|

Let v, . € K*"N K, W #Y,), then w=y,+2,=¥y,+2,, 2, € K\{y,, 0}, 2
e K\{y,, 0}, 2,#2,, x4+v;,, 2+, €K, ¥, ¥, K\{z,0}, wt+r=@-+y)+2=
(x+y)+2,. If x+y,=z2 and x-}+y,=2,, then z,+2,=2,+2,, which is a con-
tradiction, since |G| is odd. Hence x+y,%#2, or x+Y,#7,, that is, w4z e
KoK for every x (+£0) e K. Therefore (KU {w})o(KU{w})=K K contra-
dicting with the maximality property.

Proof of Theorem 3. We may suppose the maximality property. As
|G| is odd, K contains no involution. Thus the argument in the proof of
Lemma 8 is valid and using Lemma 4 we obtain in the same way

k—D((E—-2)<(E—1D)(m—k+D+(m—k+1)(m—k+3)
where, as m>1,
m>L (h—34VBE—10k19)= Yo+l V5 +3 +0<l>.
2 2 2 k

Remark. Here also we have m>(3/2)k for £>22.
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