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1o Introduction. In this paper we consider the oscillatory behavior
of the solutions of the second order nonlinear differential equation with
damping
( 1 ) (r(t)x’)’/p(t)x’ + q(t)f(x) O, t e [0, c),
where r, p, q e C[O, c), r(t)O, and p, q are allowed to take on negative
values or arbitrarily large t, f e C(R), xf(x)0 or x:/:O. We restrict our
attention to solutions of (1) which exist on some interval [r0, c).

For the second order linear differential equation:
( ) x"+ q(t)x O,
the well-known theorem o Wintner [3] or the equation (.) to be oscillatory.
Later more general theorems were established by considering weighted
averages o the integral o q.

Recently, by the use of completing square and averaging technique,
Yan [2] gave the ollowing oscillation theorem or the equation:
( 2 ) (r(t)x’)’+ p(t)x’+ q(t)x=O, t e [0, c).

Theorem. If therv exist e (1, c) and e [0, 1) such that

( 3 ) lird t (t--r)"rq(r)dr= c,
t-o to

( 4 ) lirn [(t- r)p(r)r +or--(t--r)](t--r)-r-dt<
t-o tO

then (1) is oscillatory.
Moreover Yan [1] established two theorems as criteria or the oscilla-

tion o (2) when (3) or (4) is not satisfied.
We extend his results or (2) in [1] to the equation (1).
2. Main results. We consider the equation (1) under the 2ollowing

assumption.

Assumption. (a) r, p, and q are continuous on [0, c), and r(t)O.
(b) f:R-R is continuously differentiable such that xf(x)O (x=/=O),

and f’(x)kO for some constant k. Our results are as follows:
Theorem 1. Suppose that there exist a positive continuously differ-

entiable function h(t) on [0, c) and a constant e (1, c) such that

g ) li t H(t, r)dr=
t-.o tO

where H(t, r)=(t--r)h(r)q(r)
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(7)

and

[ ]21 (t--r) h(r)p(r) +ah(r)-(t--r)h’(r) (t-r)"-,r(r)
4k r(r) h(r)

then the equation (1) is oscillatory.
Theorem 2. Suppose that there exist a positive continuously differ-

entiable function h(t) on [0, c) and an c e (1, c) such that

(6) limt.oo t- ft H(t’ r)dr<’
and there exists a continuous function (t) on [0, oo) such that

lim t- fH(t,r)dr(s),
()( 8 ) lim dr=,- h(r)r(r)

where /(t)=max ((t), 0), then the equation (1) is oscillatory.
Remark. Let f(x)--I and k=l in (1), the above Theorem 1 and

Theorem 2 imply Yan’s Theorems in [1].
:. Proofs. Proof of Theorem 1. Assume the contrary, then there

exists a solution x(t) which may be assumed to be positive on [to, oo) or
some to :> O.

Let o(t)=r(t)x’(t)/f(x(t)), cr t_to, then it ollows rom (1) that
( 9 ) o’ (t) + (f’(x(t)) r(t))o (t) / (p(t) r(t))o(t) / q(t) O, t to,
Hence, or all t

_
s

_
to,

(t--)"h()o’(r)dr+ft (t--)" h(r)f’(x(r)),o()dr
r()

+; (t_r) h(r)p(r) o(r)dr--ft (t--r)h(r)q(r)dr=O.
r()

Noting that

f (t-r)"h(r)o’(r)dr=a (t--r)"-’h(r)o(r)dr

f: (t-r)h’(r)o(r)dr-o(s)(t--r)h(s),
we obtain

(10) f (t-)h()q()dr=(t-s)h(s)(s)- (t-r)h(r)f’(x()) o()dr
r()-- [(t--) h(r)p(r) +h(r)-(t--r)h’(r)] (t-r)"-%(r)drr()

From the assumption (b) it ollows that

(t--)h(r)q(r)d (t--r)"h(s)(s) k f (t-r)h()(r)d
r()

--f [(t--) h(r)p(r) +h(r)-(t-)h’(r)] (t-r)"-%(r)drr()
and hence

1 [(t--r)h()p(r) r)h’(r)] (t _2h()
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+ 2/-k-l[(t-r) h(r)P(r)+ah(r)-(t-r)h’(r)](t-r)("-)/(’r(r)r(r) h() )l/}d
<_ (t-- s)oh(s)(s).

Therefore,

(11) _lo H(t, r)dr_ (t- s)h(s)o(s), S> to.
Divide (11) by t and take the upper limit as t--c, which contradicts the
assumption (b). This completes the proof.

Proof of Theorem 2. Let x(t) be a solution of (1). Without loss of
generality, we may assume x(t):/:O on [to, c) for some t0_0. Define

o(t) r(t)x’(t) /f(x(t)), t

_
to.

As in the proo of Theorem 1, it ollows that

(11) _[o H(t, r)dr_(t--s)h(s)o(s), 80.
Divide (11) by t and take the lower limit as t--c, we have

(s)<_ h(s)(s), s >_ to,
and hence we obtain
(12) p (s)

_
h(s)%(s), s to.

Now we define u(t) and v(t) as ollows"

u(t)=t-" [(t-) h()p() +h()_(t_)h,(r)l(t_r)o_(o()drr()

v(t)= t_ (t_r).h(r) f’(x(r)) .o(r)dr.
r()

From (10)

(u(t) +v(t)= h(s)o(s) 1-- t (t-r)h()q(r)dr.

According to (7),

lim t [ (t--r)"h(r)q(r)dr _(s), s

_
to,

Js
(13)

and

(4)
ft

lim t | (t-r)h(r)q(r)dr
t-*co 3s

t- rt [ h(v)p(v)lim|
:- 4k 3 r(r) +h(r)- (t-- r)h’(r)]
(t-r)--r(r-)dr(s), sto.

h(r)
From (6) and (13),

!i__m,
t- h(r)p(r)
4k : [(t-) r(r)

+ah(r)--(t-r)h’(r) ] (t-r)- r(r) dr o.
h(r)

This implies that there exists a sequence {t} such that
t_t0, lim t=oo and

(15) lim-k-Jt [(t-r) h(r)p(r)r(r) +ch()-(t-)h’(r)](tn-)"
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Taking the upper limit as t-+c in (14) and using (13), we obtain

lim {u(t)+ v(t)} h(s)(o(s)- lim t (t-r)h(r)q(r)dr

h(s)(s)-(s)=a.
Hence there exists a sufficiently large N such that or any nN,
(16) u(t)+v(t)<a.
Considering the assumption (b), we have

r f’(x(r)) w(r)dr k 1-- h(v)
r(r)

(17) v(t)= 1- h(r)

and we observe easily that v(t) is strictly increasing in ts. Now suppose
that lim v(t)= and by (16),
(18) lim U(tn)= .
(16) and (18) imply that or an arbitrarily positive constant (01),
there exists a sufficiently large number N’ such that or any nN’,
(9) U(tn) / v(t) <V-- <O.

On the other hand, by the Schwartz inequality

t; (t-r)
r(r)

+ah(r)-(tn-r)h’(v) (tn--V)

h(r)

Hence noting (17), for any N’,
o(t)/(t)

and by (lg) we have
lim ((t)/(t)) <,

which contradicts (18) and (19). Therefore we obtain lim (t)=e<.
rom (12) it follows that

i t (t- r)
h(r) r(r)

which contradicts (8). This completes the roof of Theorem 2.
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