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71. Eigenvalues and Eigenvectors of Supermatrices

By Yuji KoBAYASHI*) and Shigeaki NAGAMACHI**)
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1988)

§ 1. Introduction and preliminaries. The theories of linear algebra
and analysis over a Grassmann algebra have been developed and are a base
of the theory of supermanifolds, Lie supergroups and Lie superalgebras,
which are extensively used in modern physics. In his excellent book [1],
Berezin treated diagonalization of supermatrices, but he proved it only in
a direct way using induction on the number of generators of Grassmann
algebras. In this note we study the eigenvalue problem of supermatrices
in a general and natural manner by introducing the notions of (super)
eigenvalue and eigenvector. We need to consider odd eigenvectors as well
as even ones, and corresponding to them two kinds of eigenvalues appear.
Starting with the ordinary eigenvalues of the body of a given supermatrix
we can find its supereigenvalues by the perturbation method. Our method
gives an efficient algorithm to compute eigenvalues and eigenvectors, and
we demonstrate this by a simple example. The diagonalization of super-
matrices will be done as a by-product of the solution of the eigenvalue
problem.

Let 4 be a Grassmann algebra over the complex numbers C, generated
by a finite or infinite number of odd elements. The algebra 4 is a direct
sum of the even part 4, and the odd part 4,. The body of an element a of
A is denoted by @. Then the ~ is a mapping of A to C.

Let p and ¢ be nonnegative integers and let n=p4¢q. By an even
(resp. odd) vector we mean a column (,, - - -, &, Z,,1, * + +» &,,,)", Where z, is
in A, (resp. 4) for i=1, ..., p and in 4, (resp. 4, for i=p+1, ..., p+q.

We consider a supermatrix M of the form M= [‘é B ], where 4 (resp. D) is

a p X p-matrix (resp. ¢ X g-matrix) whose entries are in 4, and B (resp. C)
is a pX g-matrix (resp. ¢ X p-matrix) whose entries are in 4,. If xis an
even (resp. odd) vector, then Mz is an even (resp. odd) vector.

A supernumber i€ 4, is called an eigenvalue of a supermatrix M, if
there exists a vector x such that Mx=24x and ¥=(%,, - - -, %,,,)” is nonzero.
This vector z is called an eigenvector corresponding to 2. If x is even
(resp. odd), we say 1 is an eigenvalue of the first (resp. second) kind.

§2. Eigenvalues of unmixed matrices. In this section we consider
the case where p=0 or ¢=0, and therefore the supermatrices are usual
matrices over 4,. Let f(X)=a,+0,X+a,X*+ .- +a,X"e 4,[X] be a poly-
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nomial over 4,, The body f(X) of f(X) is defined to be the polynomial
o+ d, X +d,X*4 . .- +d,X"e C[X] over C.

Lemma 2.1. Let f(X)e A[X] be a monic polynomial of degree n.
Suppose that the body f(X) is separable and ay, - - -, a, are its roots in C.
Then f(X) has exactly n roots B, - -+, B, in A, and §,=a,, for some per-
mutation r of degree n.

Proof. We will construct the exact root 8 of f(X) from a root « of
f(X) by the Newton method. Let «®=« and define

(x(k)=a(k—-l)_f(a(k—l))f/(a(k—l))—l for kzl,
where f/(X) is the derivative of f(X). Since « is a simple root of f(X),
F(@)#0 and f(a«®) is invertible. Inductively we see that f/(a®*-") is in-
vertible, and «® above is well defined. Put §,= f(«*®). Then we have
5k=f(a(k—l)_f(a(k—l))f/(a(k—l))—l)
____f(a(k-—l))_fl(a(k—1))f(a(k—1))f/(a(k—-1))—1

+_;_f//(am-x))[f(a(k—1))f/(a(k—1))—1]2+ e

=0%19(a*™")
for some g(X) € 4(X). Since §,= f(a)=0, §, is nilpotent. Therefore 5,=0
for sufficiently large k, and f=a® is a root of f(X). Moreover f=a*=a®*-"
=...=a. Thus we find roots g, - - -, 8, of f(X) such that f,=a,, - -, f,=
a,, and we have f(X)=(X-—p)---(X—8,). If g is another root of f(X),
then f(B)=(B—B) - -(B—B.)=0. We may assume S=q«,. Then (8—4,)---
(B—B.) has a nonzero body and invertible, and hence f=4,.

Let M=(m,,) be a matrix over 4, We call the matrix M=(m,,) over
C the body of M. Then, the characteristic polynomial f(X)=det(XE —M)
of M is in 4,[X] and the characteristic polynomial of J7 is equal to FX).

Proposition 2.2. Let f(X) be a characteristic polynomial of M and
suppose f(X) is separable. Then A€ 4, is an eigenvalue of M if 2 is a root
of f(X)=0. Moreover, if x is an eigenvector of M corresponding to 2, then
& is an eigenvector of M corresponding to .

Proof. Let 2be a root of f(X). Then 1 is a root of f(X) and is an
eigenvalue of M. Set N=1E—M=(n,,), then N=1E—M. Since 1 is a
simple root, some cofactor NM of N is nonzero. Consider the following
Laplace expansion of N:

;n,kN“Fa” det N=0, =1, -..,n.

If we put =, - - -, N,,)7, then we have
(AE—M)x=Nx=0 and Z=£0.

Thus 2 is an eigenvalue of M and x is its corresponding eigenvector.

Proposition 2.3. If M has n different eigenvalues a,, - - -, o,y then M
also has n different eigenvalues By, - - -, B, such that f,=a, for i=1,...,n
and there exists an invertible matriz U over A, such that U'MU
=diag (.Bn Tty .Bn)-

Proof. From Lemma 2.1 and Proposition 2.2, M has eigenvalues
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Bis -+ +» B such that §,=a, and corresponding eigenvectors x,, - - -, z,. Put
U=(x,, ---,%,), then U is invertible because U=(&,, - - -, &,) is invertible.
Clearly, U-'MU=diag (B,, - - -, B.)-

§3. Eigenvalues of supermatrices. In this section we treat general

supermatrices given in Section 1.

Theorem 3.1. Let M =[‘é 133] be a supermatrix such that the eigen-

values ay, - - -, a, Of A and the eigenvalues 9, - - -, 0, of D are all different.
Then M has eigenvalues B, - - -, B, and 1y, - - -, 7, such that f=ay, ---, 5,=a,
and 7,=6,, - - -, 7,=08,. Moreover, the eigenvalues p,, - - -, B, (resp. 7y, - -, 7,)
are of the first (resp. second) kind, and there exists an invertible super-
matric U such that U'MU=diag (B, - -+, Bpy 71 - - *» ).

Proof. From Propositon 2.3, there are invertible matrices U, and U,
such that U;'AU,=diag(a,, - - -, a,) and U;'DU,=diag (d,, - - -, d,), where @,
=a,andd,=s,. LetV= [OU‘ ([)] ] and M’ = [‘é,, g:] =V-'MV. Then we can find

2

an eigenvalue a,+p of M’ with =0 and its corresponding even eigenvector
2y=(1,2, -+, %, Y1, - - -, Y as follows. From the equation M’z =(a,+ )z,
we have

Biy=g,

a/zxz+B;y=a1x2+ﬂx2,
(1) a,2,+By=a,x,4+ px,

cex+ Ay, =Y+ 1Y,

Co®+ A=Y+ 1Y
where B; is the i-th row of B’, C;is the i-th row of C’, x=(1, ,, - - -, ,)" and
y=y, -+, Y,)". Since the body of ¢,—a,—p=0a,—a,—Bjy is nonzero, the
first p equations in (1) give

z,=(a;—a,—Bjy)"'By,
for =2, -.-,p. Thus x, is a polynomial f,(y) in anti-commuting variables
Y+ +» Yo over A, Substituting x, by f.(y) and g by Bjy in the (p+1)-th
equation and taking account of the fact that y?=0, we get
(d,—a+9,, - -, yq))yx:'h(yz’ ) yq)’
where g and & are polynomials in y,, - - -, y, over 4. Since g(¥,, - - -, ¥,) is
bodyless and d,—a, has nonzero body, d,—a,+9(¥,----,¥,) is invertible,
and we have
y1=(d1_a1+g(y2, NS} ?/q))'lh(?/z, ) ’.l/q)-
Similarly ¥, is expressed as a polynomial in y,,,, - - -, ¥, for 2<j<q. Hence
¥, is written by the entries of M’, and the system (1) of equations is solved.
Thus we obtain an eigenvalue 8,=a,+p of M’ and its corresponding eigen-
vector z,. Similarly we get eigenvalues 8,, - - -, 8, of M’ and their corre-
sponding eigenvectors z,, - - -, 2,.
To obtain an eigenvalue 7, of the second kind, we solve the equation
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M'w,=(d,+pmw,, where w,=(&;, - -+, @ Y1, * = Y-, L, Y1 - -+, Y)" is an 0dd
vector. Let w=(z,, :--,2, W, -+, w,), then w is invertible since W=E.
Now let U=VW, then U~'MU=diag (B, - - -, Bps 11, - = -5 T

Example 3.2. Our proofs are constructive and give us an algorithm
to compute eigenvalues and eigenvectors of a given supermatrix. Now we

perform a computation for the case p=1 and ¢=1. Let M =[Z g] be a

supermatrix such that a, de 4,and b, ce 4,. Suppose that d==d. Let us
calculate along the method in the proof of Theorem 3.1. From the equation

[¢ all]=c+2],]

we have by=21, ¢c+dy=ay+2y, where 1€ 4, and y e 4,. Since y*’=0, we
have ¢+ dy=ay, and the invertibility of a —d gives

y=(a—d) e, A=bla—d)'c.
Thus we get an eigenvalue a+bc(a—d)~' and its corresponding eigenvector
1, cla—d)-H)*. Similarly, we have another eigenvalue d+be(a—d)-* and
its corresponding eigenvector (b(d—a)-*,1)7. Let

U—_—(a——d)‘l[g“d a:?l}
Then
a—d)*—be a—d
U"1=(““d)'2[( —c(;—d) (ab—( d)2+)bc]’

and we have

_ _fe+becla—d)? 0
Y ‘MU—[ 0 d+bc(a—d)"‘]'
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