70. On Complexes in a Finite Abelian Group. I

By Tamás SzóNyI*) and Ferenc Wettl**)
(Communicated by Shokichi Ifanaga, m. J. A., Sept. 12, 1988)

Let G be a finite abelian group, written additively, which will be fixed throughout this paper. We shall consider complexes, i.e. nonempty subsets of G. For $g \in G$ and two complexes A, B, we shall write

$$
\begin{aligned}
& A+g=\{a+g \mid a \in A\} \\
& A+B=\{a+b \mid a \in A, b \in B\}, \\
& A \circ B=\{a+b \mid a \in A, b \in B, a \neq b\} .
\end{aligned}
$$

We were led to this latter operation \circ in our geometric research [2] (see also [1]) on ovals in a finite projective plane, in which some of the results of the present paper were needed.

For a complex K, we shall write $|K|=k,|K \circ K|=m$. The object of this paper is to prove the following three theorems.

Theorem 1. If $k=m>4$ for a complex K, then one of the two statements holds:
(i) K is a coset of a subgroup of G.
(ii) There exists an element g of G such that $K+g$ has only involutions and $(K+g) \cup\{0\}$ is a subgroup of G.

Theorem 2. If $K+K=K \circ K$, then one of the two statements holds:
(i) $K+K=K \circ K$ is a coset of a subgroup of G.
(ii) $m \geq \frac{3}{2} k$.

Theorem 3. If $|G|$ is odd and $K+K \neq K \circ K$, then

$$
m \geq \frac{k-3-\sqrt{5 k^{2}-10 k+9}}{2}=\frac{\sqrt{5}+1}{2} k-\frac{\sqrt{5}+3}{2}+0\left(\frac{1}{k}\right) .
$$

Let us begin with
Lemma 1. K is a coset of a subgroup of G if and only if $k=|K+K|$.
Proof. The only if part is obvious. Suppose now $k=|K+K|$. Let $a \in K$ and put $K-a=H$. Then clearly $0 \in H,|H|=k$ and $|H+H|=|K+K|$ $=|H|$ and $H \subset H+H$ which implies $H=H+H$. Thus H is a subgroup of G and K is a coset of H.

Corollary. If $k=m$ and $K \circ K=K+K$, then K is a coset of a subgroup of G.

This corollary allows us to reformulate our Theorem 1 into the following form.

Theorem 1'. Suppose $K+K \neq K \circ K$ and $k=m>4$. Then (ii) of Theo-

[^0]rem 1 holds.
This can be again reformulated as follows.
When $K+K \neq K \circ K, K$ has an element a such that $2 a$ can not be written as $b+c, b, c \in K, b \neq c$. Take such $a \in K$ and put $K^{\prime}=K-a$. Then $0 \in K^{\prime}, 0 \notin K^{\prime} \circ K^{\prime},\left|K^{\prime}\right|=k,\left|K^{\prime} \circ K^{\prime}\right|=m$. Rewriting K for K^{\prime}, we see that the proof of Theorem 1^{\prime} can be reduced to that of

Theorem $1^{\prime \prime}$. Suppose
(0)

$$
0 \in K \quad \text { but } \quad 0 \notin K \circ K
$$

If $k=m>4$, then $K \backslash\{0\}$ consists of involutions and there is an involution g of G such that $(K+g) \cup\{0\}$ becomes a subgroup of G.

In the following (until the end of the proof of this theorem except in the corollary to Lemma 3) we suppose always that our K satisfies (0). We introduce the following notations (for such K):

We put for $x \in K, x \neq 0$,

$$
K_{x}=x+(K \backslash\{0, x\})
$$

and for $u \in G$

$$
K^{u}=\left\{x \in K \mid u \in K_{x}\right\} .
$$

K^{u} consists of those elements of K for which $u=x+y$ has a solution with $x, y \in K, y \neq 0, x \neq y$. Obviously we have

$$
0, x \in K_{x} \cup K^{x}, \quad\left|K_{x}\right|=k-2
$$

and hence

$$
\left|K_{x} \cap K\right| \geq(k-2)-(m-k+1)=2 k-3-m
$$

Lemma 2. Suppose that K (satisfying (0)) has no involution and $m \geq k$. Then $\left|K^{u}\right| \leq m-k+1$ for $u(\neq 0) \in K$.

Proof. We have $K^{u} \cap K_{u}=\varnothing$, because from $x \in K^{u} \cap K_{u}$ would follow $u-x \in K$ (since $x \in K_{u}$) and $x-u \in K$ (since $x \in K^{u}$). Since K has no involution, $x-u \neq u-x$, but $0=(x-u)+(u-x) \in K \circ K$ in contradiction to (0). As $K^{u} \cup K_{u} \subset(K \circ K) \backslash\{u\}$, we obtain $m-1 \geq\left|K^{u} \cup K_{u}\right|+\left|K^{u} \cap K_{u}\right|=\left|K^{u}\right|+\left|K_{u}\right|$ $=\left|K^{u}\right|+(k-2)$, whence conclusion.

Lemma 3. If K (satisfying (0)) contains no involution, then $m \geq$ (3/2) $k-2$.

Proof. We count $N=\left|\left\{\left(u, K_{x}\right) \mid u \in K_{x}\right\}\right|$ in two different ways. In counting first x and then $u \in K_{x}$, we see $N=(k-1)(k-2)$. If one counts first u and then x with $u \in K_{x}$, one obtains

$$
\begin{aligned}
N & =\sum_{u \in K \circ K}\left|K^{u}\right|=\sum_{u \in(K \circ K) \cap K}\left|K^{u}\right|+\sum_{u \in(K \circ K) \backslash K}\left|K^{u}\right| \\
& \leq(k-1)(m-k+1)+(m-k+1)(k-1)
\end{aligned}
$$

in virtue of Lemma 2, as $|(K \circ K) \cap K|=k-1,\left|K^{u}\right| \leq m-k+1,|(K \circ K) \backslash K|=$ $m-k+1,\left|K^{u}\right| \leq k-1$, whence conclusion.

Corollary. If K contains no involution and $k=m>4$, then $K \circ K=$ $K+K$, so that (in virtue of Corollary to Lemma 1) K is a coset of a subgroup of G.

Remark. The following example shows that the number 4 in the above corollary can not be replaced by a smaller number. In this example,
we have $k=m=4, K$ contains no involution and is not a coset of any subgroup of $G: G=Z / 12 Z, K=\{1,5,7,11\}, K \circ K=\{0,4,6,8\}$.

Proof of Theorem $1^{\prime \prime}$. We suppose that K satisfies (0) (so that $K \circ K$ $\neq K+K)$ and $m=k>4$. Put $K \backslash\{0\}=L . \quad$ As $K \ni 0$, we have $K \circ K \supset L$ and since $m=k$, $(K \circ K) \backslash L$ consists of just one element, denoted w, and from $x, y \in K, x \neq y$ follows $x+y \in L \subset K$ or $x+y=w$, an argument which will be repeatedly used in the following.

By the above corollary, K contains an involution, denoted $a(\neq 0)$. Put $I_{K}=\{x \in K \mid 2 x=0\}$. We have $K \supset I_{K} \supset\{0, a\}$. Now we shall prove $K=$ I_{K} in showing that $K \backslash I_{K} \neq \varnothing$ leads to a contradiction.

An element x of $K \backslash I_{K}$ will be called improper if $a+x \in K$ and either $2 x$ or $a+2 x \in K$. We shall show that an improper element should exist, if $K \backslash I_{K} \neq \varnothing$.

Let x be any element of $K \backslash I_{K}$. Then $x \in K$ and $2 x \neq 0$. We have $a \in K$ and $2 a=0$, so that $a \neq x$. If $a+x \in K$ and $a+2 x \neq w$, then x is improper, because $a+2 x=(a+x)+x \in K$ since $x, a+x \in K$ and $x \neq a+x$.

Suppose $a+x \in K$ but $a+2 x=w$. Then x is still improper, if $2 x \in K$. Suppose therefore $2 x \notin K$. As $k \geq 5, K \backslash\{0, a, x, a+x\} \neq \varnothing$ and we can take an element $y \in K \backslash\{0, a, x, a+x\}$. Then $x, y \in K, x \neq y$, and $x+y \neq a+2 x=w$ (because $y \neq a+x)$ so that $x+y \in L \subset K$ and $a+(x+y)=(a+x)+y \in K$ as $a+x, y \in K, a+x \neq y$, and $a+(x+y) \neq a+2 x=w$ (because $x \neq y$). We have furthermore $2 x+y=x+(x+y) \in K$ as $x, x+y \in K, x \neq x+y$ (because $y \neq 0$) and $2 x+y \neq a+2 x=w$ (because $y \neq a$), and $2(x+y)=(2 x+y)+y \in K \circ K$ as $2 x+y, y \in K, 2 x+y \neq y$ (because $2 x \neq 0$). We have also $a+2(x+y)=$ $(a+x+y)+(x+y) \in K \circ K$ as $a+x+y, x+y \in K$ and $a+x+y \neq x+y$. Thus both $2(x+y)$ and $a+2(x+y) \in K \circ K$. As these are different elements, one of them should be in K, and $x+y$ is improper. The existence of an improper element is thus shown in case $a+x \in K$.

Suppose now $a+x=w$. As $k \geq 5$, we can take an element y of $K \backslash\{0, a, x\}$. Then $a, y \in K$ and $a+y \neq a+x=w$. Therefore $a+y \in L \subset K$. If $2 y=x$, we have $0 \neq 2 y \in K$ and y is improper. If $2 y \neq x$, then $a+2 y \neq$ $a+x=w$ and $a+2 y=(a+y)+y \in K \circ K$, so that $a+2 y \in L \subset K$. Thus y is improper if $2 y \neq 0$. In case $2 y=0$, put $z=x+y$. We have $x, y \in K, x \neq y$ and $x+y \neq a+x=w$, therefore $z \in L \subset K$. Furthermore $2 z=2 x \neq 0$ and $a+z$ $=a+(x+y) \in L \subset K$ as $a, x+y \in K$ and $(a+x)+y \neq a+x=w$, and $a+2 z=$ $(a+z)+z \in L \subset K$ as $a+z, z \in K, a+z \neq z$ and $a+2 z=a+2 x \neq a+x=w$. Thus z is improper, and we have shown the existence of an improper element in all cases.

Now let j be any natural number, and consider the following three properties of an improper element x :

$$
\begin{array}{ll}
A_{j}: & j x \neq 0 \quad \text { and } \quad a+j x \neq 0, \\
B_{j}: & j x \in K \text { or } a+j x \in K, \\
C_{j}: & j x \in K \circ K \quad \text { and } a+j x \in K \circ K .
\end{array}
$$

It is clear that C_{j} implies A_{j} and B_{j}. We see that C_{j+2} follows from A_{j}
and B_{j+1}. In fact

$$
(j+2) x=x+(j+1) x=(a+x)+\{a+(j+1) x\} \in K \circ K
$$

because $x \neq(j+1) x, a+x \neq a+(j+1) x$ in virtue of A_{j}, and $x,(j+1) x \in K$ or $(a+x), a+(j+1) x \in K$ in virtue of B_{j+1} and the improperness of x,

$$
a+(j+2) x=(a+x)+(j+1) x=x+\{a+(j+1) x\} \in K \circ K
$$

holds for the same reason.
It is easy to see that A_{j}, B_{j} hold for $j=1,2$ for any improper element x, whence C_{3}, C_{4}, \cdots and A_{3}, A_{4}, \cdots should follow which implies a contradiction because A_{n} can not hold if n is the order of x. Thus we have proved $K=I_{K}$. We see also that w is an involution because $w=u+v, u$, $v \in I_{K}$.

To complete the proof of our theorem, put $H=(K+w) \cup\{0\}$ and let us show that H is a subgroup of G. Using $K=I_{K}$, it is easily seen that $K+w$ $=L \cup\{w\}=K \circ K$. Let $x, y \in H$. If x or $y=0$ or $x=y$, it is clear that $x+y$ $\in H$. Otherwise we can write $x=x_{0}+w, y=y_{0}+w, x_{0}, y_{0} \in K, x_{0} \neq y_{0}$. Then $x+y=x_{0}+y_{0} \in K \circ K \subset H$, which shows that H is closed under addition.
(to be continued.)

References

[1] G. Korchmáros: Una generalizzazione del teorema di F. Buekenhout sulle ovali pascaliane. Boll. U. M. I., (5) 18-B, pp. 673-687 (1981).
[2] F. Wettl: On the nuclei of a point set of a finite projective plane. Journal of Geometry, 30, 157-163 (1987).

[^0]: *) Computer and Automation Institute, Hungarian Academy of Sciences.
 **) Mathematical Department of Technical University, Budapest, Faculty of Transportation Engineering.

