63. Solvability in Distributions for a Class of Singular Differential Operators. I^{\dagger}

By Hidetoshi Tahara
Department of Mathematics, Sophia University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1988)

The local solvability for Fuchsian operators has been studied by many authors (see Tahara [4] and its references). In this paper, the author will establish the local solvability in \mathscr{D}^{\prime} for a class of (non-Fuchsian) singular hyperbolic operators including

$$
L=\left(t \partial_{t}\right)^{2}-\Delta_{x}+\alpha(t, x)\left(t \partial_{t}\right)+\left\langle b(t, x), \partial_{x}\right\rangle+c(t, x) .
$$

§ 1. Theorem. Let us consider

$$
P=\left(t \partial_{t}\right)^{m}+\sum_{\substack{j+\mid \alpha<\leq m \\ j<m}} a_{j, a}(t, x)\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha},
$$

where $(t, x)=\left(t, x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}, \quad \partial_{t}=\partial / \partial t, \quad \partial_{x}=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right), \quad m \in$ $\{1,2,3, \cdots\}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in\{0,1,2, \cdots\}^{n},|\alpha|=a_{1}+\cdots+\alpha_{n}$ and $\partial_{x}^{\alpha}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}}$ $\cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$. On the coefficients, we assume that $\alpha_{j, \alpha}(t, x)(j+|\alpha| \leqq m$ and $j<m$) are C^{∞} functions defined in an open neighborhood U of (0,0) in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n} . \quad$ For $(t, x) \in U$ and $\xi \in \boldsymbol{R}_{\xi}^{n} \backslash\{0\}$, denote by $\lambda_{1}(t, x, \xi), \cdots, \lambda_{m}(t, x, \xi)$ the roots of the equation (in λ)

$$
\lambda^{m}+\sum_{\substack{j+|\alpha|=m \\ j<m}} a_{j, \alpha}(t, x) \lambda^{j} \xi^{\alpha}=0 .
$$

Assume that for any $(t, x, \xi) \in U \times\left(R_{\xi}^{n} \backslash\{0\}\right)$ the following conditions (H-1)-(H-3) hold:
(H-1) $\quad \lambda_{i}(t, x, \xi) \quad$ is real for $1 \leqq i \leqq m$.
(H-2) $\quad \lambda_{i}(t, x, \xi) \neq \lambda_{j}(t, x, \xi) \quad$ for $1 \leqq i \neq j \leqq m$.
(H-3) $\quad \lambda_{i}(t, x, \xi) \neq 0 \quad$ for $1 \leqq i \leqq m$.
Then we have:
Theorem. There is an open neighborhood V of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ which satisfies the following: for any $f(t, x)(=f) \in \mathscr{D}^{\prime}(\bar{V})$ there exists a $u(t, x)$ $(=u) \in \mathscr{D}^{\prime}(\bar{V})$ such that $P u=f$ holds on V.

Here, \bar{V} denotes the closure of V and $\mathscr{D}^{\prime}(\bar{V})$ denotes the set of all distributions defined in a neighborhood of \bar{V}.

Remark 1. In the C^{∞} function space, the above operator P was already discussed and the following results are known: (1) the local solvability in C^{∞} (by Tahara [3], Serra [2]) and (2) the existence of C^{∞} nullsolutions (by Mandai [1]).

Remark 2. By the same argument given below, we can prove the local solvability in \mathscr{D}^{\prime} (near the origin) also for the following type of (nonFuchsian) hyperbolic operators

[^0]\[

$$
\begin{aligned}
& L_{1}=\left(t \partial_{t}\right)^{2}-t^{2} \partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}+a(t, x)\left(t \partial_{t}\right)+b_{1}(t, x) \partial_{x_{1}}+b_{2}(t, x) \partial_{x_{2}}+c(t, x), \\
& L_{2}=\left(t \partial_{t}\right)\left(\left(t \partial_{t}\right)^{2}-\partial_{x}^{2}\right)+\sum_{i+j \leq 2} a_{i, j}(t, x)\left(t \partial_{t}\right)^{i} \partial_{x}^{j}
\end{aligned}
$$
\]

under $b_{1}(0, x)=0$ near $x=0$ (for L_{1}) and $a_{0,2}(0,0) \oplus\{-1,-2, \cdots\}$ (for L_{2}).
§ 2. Proof of Theorem. As in Tahara [4], Theorem is obtained by the following two propositions.

Proposition 1. Let P be as in § 1. Then, there are $s_{k}>0(k=0,1,2, \ldots)$ and an open neighborhood U_{0} of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ which satisfy the following : for any $k \in\{0,1,2, \cdots\}, s>s_{k}$, an open subset W of U_{0} and $g \in H^{-k}(W)$ there exists a $v \in H^{-k}(W \cap\{t>0\})\left[\right.$ resp. $\left.v \in H^{-k}(W \cap\{t<0\})\right]$ such that $P\left(t^{-s} v\right)=t^{-s} g$ holds on $W \cap\{t>0\}$ [resp. on $W \cap\{t<0\}$]. Here H^{-k} denotes the usual Sobolev space.

Proposition 2. Let P be as in §1. Then, there is an open neighborhood V of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ which satisfies the following: for any $f \in \mathscr{D}^{\prime}(\bar{V})$ with $\operatorname{supp}(f) \subset\{t=0\}$ there exists a $u \in \mathscr{D}^{\prime}(\bar{V})$ with $\operatorname{supp}(u) \subset\{t=0\}$ such that $P u=f$ holds on V.

In fact, if we assume these facts, we can prove theorem as follows. Let $f \in \mathscr{D}^{\prime}(\bar{V})$. Then we have $f \in H^{-k}(W)$ for some $k \in\{0,1,2, \cdots\}$ and some open set W satisfying $\bar{V} \subset W \subset U_{0}$. Take $s \in \boldsymbol{Z}$ such that $s>s_{k}$. Then by putting $g=t^{s} f$ and by Proposition 1 we can find $v_{+} \in H^{-k}(W \cap\{t>0\})$ and $v_{-} \in H^{-k}(W \cap\{t<0\})$ such that $P\left(t^{-s} v_{+}\right)=f$ on $W \cap\{t>0\}$ and $P\left(t^{-s} v_{-}\right)=f$ on $W \cap\{t<0\}$. Take $u_{1} \in \mathscr{D}^{\prime}(W)$ such that $u_{1}=t^{-s} v_{+}$on $W \cap\{t>0\}$ and $u_{1}=t^{-s} v_{-}$ on $W \cap\{t<0\}$ (note that this is possible, since $v_{+} \in H^{-k}(W \cap\{t>0\})$ and v_{-} $\in H^{-k}(W \cap\{t<0\})$ hold $)$. Put $f_{1}=f-P u_{1}$. Then $f_{1} \in \mathscr{D}^{\prime}(W)$ and $\operatorname{supp}\left(f_{1}\right)$ $\subset\{t=0\}$. Therefore by Proposition 2 and the condition $\bar{V} \subset W$ we have $u_{2} \in \mathscr{D}^{\prime}(\bar{V})$ such that supp $\left(u_{2}\right) \subset\{t=0\}$ and that $P u_{2}=f_{1}$ holds on V. Thus, by putting $u=u_{1}+u_{2}$ we obtain $u \in \mathcal{D}^{\prime}(\bar{V})$ such that $P u=f$ holds on V.

Hence, to have theorem it is sufficient to prove Propositions 1 and 2 above.
§3. Proof of Proposition 1. Define P_{-s} by $P_{-s} u=t^{s} P\left(t^{-s} u\right)$. Then by Lemma 1 given below we can see the following: there are $s_{k}>0$ $(k=0,1,2, \cdots), \delta_{k}>0(k=0,1,2, \cdots)$ and an open neighborhood U_{0} of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ such that

$$
\begin{equation*}
\left\|\left(P_{-s}\right)^{*} \varphi\right\|_{k}^{2} \geqq \delta_{k} s^{2}\|\varphi\|_{k}^{2} \tag{3.1}
\end{equation*}
$$

holds for any $s>s_{k}$ and $\varphi \in C_{0}^{\infty}\left(U_{0} \cap\{t>0\}\right)$, where $\|*\|_{k}$ denotes the norm in the Sobolev space $H^{k}\left(U_{0} \cap\{t>0\}\right)$.

By using this fact, let us show Proposition 1. Let $s>s_{k}$ and $g \in H^{-k}(W)$. Denote by $H_{0}^{k}(W \cap\{t>0\})$ the closure of $C_{0}^{\infty}(W \cap\{t>0\})$ in $H^{k}(W \cap\{t>0\})$. Define a linear subspace Z of $H_{0}^{k}(W \cap\{t>0\})$ by $Z=\left\{\left(P_{-s}\right) * \varphi ; \varphi \in C_{0}^{\infty}(W \cap\right.$ $\{T>0\})\}$ and a linear functional T on Z by $T\left(\left(P_{-s}\right) * \varphi\right)=\langle\varphi, g\rangle$. Then by (3.1) we can see that T is well-defined and it is continuous on Z with respect to the topology induced from $H_{0}^{k}(W \cap\{t>0\})$. Therefore we can find a $v \in H^{-k}(W \cap\{t>0\})$ such that $T(z)=\langle z, v\rangle$ for any $z \in Z$, that is, $\left\langle\left(P_{-s}\right)^{*} \varphi, v\right\rangle$ $=\langle\varphi, g\rangle$ for any $\varphi \in C_{0}^{\infty}(W \cap\{T>0\})$. Hence, we have $P_{-s} v=g$ on $W \cap\{t>0\}$ and therefore $P\left(t^{-s} v\right)=t^{-s} g$ on $W \cap\{t>0\}$.

Lemma 1. Let $A\left(t, x, D_{x}\right)(=A(t))$ be an $m \times m$ matrix of pseudodifferential operators of order 1 on \boldsymbol{R}_{x}^{n} depending smoothly on $t \in[0, T]$, and let $A(t)^{*}$ be the formal adjoint operator of $A(t)$. Assume that every component of $A(t)+A(t) *$ is of order 0 . Put

$$
L_{s}=t \partial_{t}+s+A\left(t, x, D_{x}\right)
$$

Then, for any $k \in\{0,1,2, \cdots\}$ there are $s_{k}>0$ and $c_{k}>0$ such that

$$
\left\|L_{s} \varphi\right\|_{k}^{2} \geqq c_{k} s^{2}\|\varphi\|_{k}^{2}
$$

holds for any $s>s_{k}$ and $\varphi \in C_{0}^{\infty}\left((0, T) \times \boldsymbol{R}_{x}^{n}\right)^{m}$.
§4. Proof of Proposition 2. Put

$$
C\left(\rho ; x, \partial_{x}\right)=\rho^{m}+\sum_{\substack{j+\mid \alpha \leq \leq m \\ j<m}} a_{j, \alpha}(0, x) \rho^{j} \partial_{x}^{\alpha} .
$$

Then by the fact that $C\left(\rho ; x, \partial_{x}\right)$ is elliptic near $x=0$ (by (H-3)) and by Lemma 2 given below we can see the following: there are $\delta_{k}>0(k=0,1,2$, \cdots...) and an open neighborhood Ω_{0} of $x=0$ in R_{x}^{n} such that

$$
\left\|C\left(-l ; x, \partial_{x}\right)^{*} \varphi\right\|_{k}^{2} \geqq \delta_{k}\|\varphi\|_{k_{+m}}^{2}
$$

holds for any $l \in\{0,1,2, \cdots\}$ and $\varphi \in C_{0}^{\infty}\left(\Omega_{0}\right)$, where $\|*\|_{k}$ denotes the norm in the Sobolev space $H^{k}\left(\Omega_{0}\right)$. Therefore by taking $\Omega \subset \Omega_{0}$ we have the following: for any $\mu(x) \in \mathscr{D}^{\prime}(\bar{\Omega})$ and any $l \in\{0,1,2, \cdots\}$ there exists a $\psi(x) \in$ $\mathscr{D}^{\prime}(\bar{\Omega})$ such that $C\left(-l ; x, \partial_{x}\right) \psi=\mu$ holds on Ω.

By using this fact, let us show Proposition 2. Take an open neighborhood V so that $V \cap\{t=0\}(=\Omega) \subset \Omega_{0}$. Let $f \in \mathscr{D}^{\prime}(\bar{V})$ be such that supp (f) $\subset\{t=0\}$. Then f is expressed in the form $f=\sum_{i=0}^{N} \delta^{(i)}(t) \otimes \mu_{i}(x)$ for some $\mu_{i} \in \mathscr{D}^{\prime}(\bar{\Omega})$. Put $u=\sum_{i=0}^{N} \delta^{(i)}(t) \otimes \psi_{i}(x)$. Then we can see that $P u=f$ is equivalent to the following :

$$
\left\{\begin{array}{l}
C\left(-N-1 ; x, \partial_{x}\right) \psi_{N}=\mu_{N}, \tag{4.1}\\
C\left(-N ; x, \partial_{x}\right) \psi_{N-1}=\mu_{N-1}+F_{N-1}\left(\psi_{N}\right), \\
\vdots \vdots \vdots \vdots \vdots \\
C\left(-1 ; x, \partial_{x}\right) \psi_{0}=\mu_{0}+F_{0}\left(\psi_{1}, \cdots, \psi_{N}\right),
\end{array}\right.
$$

where $F_{i}\left(\psi_{i+1}, \cdots, \psi_{N}\right)$ is a distribution in x determined by $\psi_{i+1}, \cdots, \psi_{N}$. Therefore by solving (4.1) successively we can obtain $\psi_{i} \in \mathscr{D}^{\prime}(\bar{\Omega})(i=0,1$, \cdots, N) so that (4.1) holds on Ω, that is $P u=f$ holds on V.

Lemma 2. Let $a_{i}\left(x, D_{x}\right)(i=1, \cdots, m)$ be pseudo-differential operators of order 1 with real symbol $a_{i}(x, \xi)$ satisfying $\left|a_{i}(x, \xi)\right| \geqq c(1+|\xi|)$ on $\boldsymbol{R}_{x}^{n} \times \boldsymbol{R}_{\xi}^{n}$ for some $c>0$, and let $B\left(x, D_{x}\right)$ be an $m \times m$ matrix of pseudo-differential operators of order 0. Put

$$
K_{s}=s+\sqrt{-1}\left[\begin{array}{ccc}
a_{1}\left(x, D_{x}\right) & & 0 \\
0 & \ddots & \\
a_{m}\left(x, D_{x}\right)
\end{array}\right]+B\left(x, D_{x}\right)
$$

Then, there are $s_{0}>0$ and $d_{k}>0(k=0,1,2, \cdots)$ such that

$$
\left\|K_{s} \varphi\right\|_{k}^{2} \geqq d_{k}\|\varphi\|_{k+1}^{2}
$$

holds for any $s>s_{0}$ and $\varphi \in C_{0}^{\infty}\left(\boldsymbol{R}_{x}^{n}\right)^{m}$.

References

[1] T. Mandai: C^{∞} null-solutions for some non-Fuchsian operators with C^{∞} coefficients. Bull. Fac. Gen. Ed. Gifu Univ., 22, 95-100 (1987).
[2] E. Serra: Local solvability for a class of totally characteristic operators (preprint).
[3] H. Tahara: Singular hyperbolic systems. IV. Remarks on the Cauchy problem for singular hyperbolic partial differential equations. Japan. J. Math., 8, 297308 (1982).
[4] -: On the local solvability of Fuchsian type partial differential equations. Prospect of Algebraic Analysis (eds. M. Kashiwara and T. Kawai). Academic Press, Boston (1988).

[^0]: ${ }^{\dagger}$) Dedicated to Professor Tosihusa Kimura on his 60th birthday.

