37. Algebraic Equations for Green Kernel on a Tree

By Kazuhiko Аомото
Department of Mathematics, Nagoya Universtiy
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1988)

Let Γ be a connected, locally finite tree with the set of vertices $V(\Gamma)$. Let A be a symmetric operator on $l^{2}(\Gamma)$, the space of square summable complex valued functions on $V(\Gamma)$:
(1)

$$
A u(\gamma)=\sum_{\left\langle r^{\prime}, r\right\rangle} a_{r, r^{\prime}} u\left(\gamma^{\prime}\right)+a_{r, r} u(\gamma)
$$

for $u \in l^{2}(\Gamma)$, with $a_{r, r}$ and $a_{r, r^{\prime}} \in \boldsymbol{R}$ such that $a_{r, r^{\prime}} \neq 0$, where $\left\langle\gamma, \gamma^{\prime}\right\rangle$ means that γ and γ^{\prime} are adjacent to each other. We assume that A is self-adjoint with the domain $\mathscr{D}(A):\left\{\left.u \in l^{2}(\Gamma)\left|\sum_{r \in V(\Gamma)}\right| u(\gamma)\right|^{2}<\infty\right\}$. Then there exists uniquely the Green function $G\left(\gamma, \gamma^{\prime} \mid z\right)$ for $A, \gamma, \gamma^{\prime} \in V(\Gamma)$, representing the resolvent $(z-A)^{-1}$ for $z \in C, \operatorname{Im} z \neq 0$:

$$
\begin{equation*}
G\left(\gamma, \gamma^{\prime} \mid z\right)=\int_{-\infty}^{+\infty} \frac{d \Theta\left(\gamma, \gamma^{\prime} \mid \lambda\right)}{z-\lambda} \tag{2}
\end{equation*}
$$

for the spectral kernel $\Theta\left(\gamma, \gamma^{\prime} \mid \lambda\right)$ of A. We remark that for any $\gamma \in V(\Gamma)$, $G(\gamma, \gamma \mid z)$ satisfies

$$
\begin{equation*}
\operatorname{Im} G(\gamma, \gamma \mid z) \cdot \operatorname{Im} z<0 \tag{3}
\end{equation*}
$$

The purpose of this note is to extend a result obtained in [3] and [4] to an arbitrary tree. Algebraicity of Green functions was proved under various contexts. Here we want to give explicit formulae for them for an arbitrary self adjoint operator (see [3], [8] and [9]). First we want to prove

Lemma 1. For arbitrary adjacent vertices γ, γ^{\prime}, suppose γ^{\prime} and $r_{0} \in V(\Gamma)$ do not lie in the same connected component of $\Gamma-\{\gamma\}$. Then the quotient $G\left(\gamma_{0}, \gamma^{\prime} \mid z\right) / G\left(\gamma_{0}, \gamma \mid z\right)$ does not depend on γ_{0}.

Proof. We denote by $\Gamma_{r^{\prime}}$ the connected subtree of Γ consisting of vertices $\gamma^{\prime \prime}$ lying in the connected component containing γ^{\prime} of $\Gamma-\{\gamma\}$. We consider the following boundary value problem on the connected subtree $\Gamma_{r^{\prime}} \cup\{\gamma\}$ containing $\Gamma_{r^{\prime}}$ and γ : To find a solution $u \in l^{2}\left(\Gamma_{r^{\prime}} \cup\{\gamma\}\right)$ such that
(4) $A u\left(\gamma^{\prime \prime}\right)=z u\left(\gamma^{\prime \prime}\right) \quad$ for $\gamma^{\prime \prime} \in V\left(\Gamma_{\gamma^{\prime}}\right)$,
(5)

$$
u(\gamma)=1
$$

Then every $G\left(\gamma_{0}, \gamma^{\prime \prime} \mid z\right) / G\left(\gamma_{0}, \gamma \mid z\right)$ is a solution for this problem. Hence Lemma 1 follows from the following :

Lemma 2. There exists the unique solution $u\left(\gamma^{\prime \prime}\right)$ for the problem (4) and (5).

Proof. Suppose that there exist two solutions $u_{1}\left(\gamma^{\prime \prime}\right)$ and $u_{2}\left(\gamma^{\prime \prime}\right)$ on $V\left(\Gamma_{r^{\prime}} \cup\{\gamma\}\right)$. Then the difference $v=u_{1}-u_{2}$ also satisfies (4) and vanishes at r. We have to prove that v vanishes identically. We define a function \tilde{v} on $V\left(I^{\top}\right)$ such that

$$
\begin{equation*}
\tilde{v}\left(\gamma^{\prime \prime}\right)=v\left(\gamma^{\prime \prime}\right) \quad \text { for } \gamma^{\prime \prime} \in V\left(\Gamma_{\gamma^{\prime}}\right), \tag{6}
\end{equation*}
$$

(7)

$$
\tilde{v}\left(\gamma^{\prime \prime}\right)=0 \quad \text { otherwise }
$$

Then $\tilde{v} \in \mathscr{D}(A)$ and
(8)

$$
(z-A) \tilde{v}\left(\gamma^{\prime \prime}\right)=-\delta_{r, r^{\prime \prime}} a_{r, r^{\prime}} v\left(\gamma^{\prime}\right)
$$

Since the Green kernel $G\left(\omega, \omega^{\prime} \mid z\right)$ for $\operatorname{Im} z \neq 0$ defines a bounded operator $\mathcal{G}(z)$ on $l^{2}(\Gamma)$ such that Image $\mathcal{G}(z) \subset \mathscr{D}(A)$ and
(9) $\quad 1=(z-A) \cdot \mathcal{G}(z) \supset \mathcal{G}(z) \cdot(z-A)$,
we have for $\gamma^{\prime \prime} \in V(\Gamma)$
(10) $\tilde{v}\left(\gamma^{\prime \prime}\right)=(z-A) \cdot \mathcal{G}(z) \tilde{v}\left(\gamma^{\prime \prime}\right)=\mathcal{G}(z) \cdot(z-A) \tilde{v}\left(\gamma^{\prime \prime}\right)=-a_{\gamma, \gamma^{\prime}} G\left(\gamma^{\prime \prime}, \gamma \mid z\right) v\left(\gamma^{\prime}\right)$.

In particular for $\gamma^{\prime \prime}=\gamma$
(11)

$$
0=G(\gamma, \gamma \mid z) v\left(\gamma^{\prime}\right)
$$

But $G(\gamma, \gamma \mid z)$ never vanishes, whence $v\left(\gamma^{\prime}\right)$ must vanish. Then (8) shows \tilde{v} becomes an eigenfunction for A with the eigenvalue z. But A being selfadjoint, there is no non-trivial such function. Hence \tilde{v}, a fortiori, v must vanish identically. The lemma follows.

We shall denote the quotient $G\left(\gamma, \gamma^{\prime} \mid z\right) / G(\gamma, \gamma \mid z)$ by $\alpha\left(\gamma_{\gamma^{\prime}} \mid z\right)$.
Now we want to prove a crucial
Lemma 3. For adjacent vertices $\gamma, \gamma^{\prime} \in V(\Gamma)$,

$$
\begin{equation*}
\alpha\left({ }_{r^{\prime}}^{r} \mid z\right)=\frac{-W_{r}+\sqrt{W_{r}^{2}+4 a_{r, r^{\prime}}^{2} W_{r} / W_{r^{\prime}}}}{2 a_{r, r^{\prime}}} \tag{12}
\end{equation*}
$$

Proof. By the equations for the Green functions, we have
(13) $z G(\gamma, \gamma \mid z)-\sum_{\left\langle r^{\prime \prime}, \gamma\right\rangle, \gamma^{\prime \prime} \neq \gamma^{\prime}} a_{r, r^{\prime \prime}} G\left(\gamma, \gamma^{\prime \prime} \mid z\right)-a_{\gamma, \gamma^{\prime}} G\left(\gamma, \gamma^{\prime} \mid z\right)-a_{r, \gamma} G(\gamma, \gamma \mid z)=1$.

Dividing by $G(\gamma, \gamma \mid z)$,

$$
\begin{equation*}
z-\sum_{\left\langle r^{\prime \prime}, r\right\rangle} a_{r, r^{\prime \prime}} \alpha\left(\gamma_{r^{\prime \prime}} \mid z\right)-a_{r, r}=W_{r}(z) . \tag{14}
\end{equation*}
$$

In the same way
(15) $z G\left(\gamma^{\prime}, \gamma \mid z\right)-\sum_{\left\langle\gamma^{\prime \prime}, r\right\rangle, \gamma^{\prime \prime} \neq \gamma^{\prime}} a_{\gamma, r^{\prime \prime}} G\left(\gamma^{\prime}, \gamma^{\prime \prime} \mid z\right)-a_{r, \gamma^{\prime}} G\left(\gamma^{\prime}, \gamma^{\prime} \mid z\right)-a_{r, \gamma} G\left(\gamma^{\prime}, \gamma \mid z\right)=0$.

Dividing by $G\left(\gamma^{\prime}, \gamma \mid z\right)$ we have

$$
\begin{equation*}
z-\sum_{\left\langle r^{\prime \prime}, r\right\rangle, r^{\prime \prime} \neq r^{\prime}} a_{r, r^{\prime \prime}} \alpha\left(r_{r^{\prime \prime}}^{r^{\prime \prime}} \mid z\right)-a_{r, r^{\prime}} \frac{1}{\alpha\left(r_{r}^{\prime} \mid z\right)}-a_{r, r}=0 . \tag{16}
\end{equation*}
$$

Subtraction of (14) from (16) gives

$$
\begin{equation*}
a_{r, r^{\prime}}\left\{\frac{1}{\alpha\left(r_{r}^{\prime} \mid z\right)}-\alpha\left(r_{r^{\prime}} \mid z\right)\right\}=W_{r}(z) . \tag{17}
\end{equation*}
$$

By symmetry we have similarly

$$
\begin{equation*}
a_{r, r^{\prime}}\left\{\frac{1}{\alpha\left(r_{r^{\prime}} \mid z\right)}-\alpha\left(r_{r}^{r^{\prime}} \mid z\right)\right\}=W_{r^{\prime}}(z) \tag{18}
\end{equation*}
$$

These two equations give immediately the formulae (12), seeing the asymptotic behaviours of $W_{r^{\prime}}(z), W_{r^{\prime}}(z)$ and $\alpha\left(\gamma_{r^{\prime}} \mid z\right)$:

$$
\begin{equation*}
W_{r}(z) \sim z, W_{r^{\prime}}(z) \sim z \quad \text { and } \quad \alpha\left(r_{r^{\prime}} \mid z\right) \sim \frac{a_{r, r^{\prime}}}{z} . \tag{19}
\end{equation*}
$$

The substitution of the formulae (12) into (14) yields the following equations:

Theorem. For each vertex $\gamma \in V(\Gamma)$,

$$
\begin{equation*}
W_{r}=z-a_{r, r}-\sum_{\left\langle r, r^{\prime}\right\rangle} \frac{1}{2}\left(-W_{r}+\sqrt{W_{r}^{2}+4 a_{r, r^{\prime}}^{2} W_{r} / W_{r^{\prime}}}\right) . \tag{20}
\end{equation*}
$$

For arbitrary $\gamma, \gamma^{\prime} \in V(\Gamma)$, let $\gamma=\gamma_{0}, \gamma_{1}, \cdots, \gamma_{m-1}, \gamma_{m}=\gamma^{\prime}$ be vertices on the geodesic path $\left[\gamma, \gamma^{\prime}\right]$ joining γ and γ^{\prime} such that $\operatorname{dis}\left(\gamma, \gamma_{j}\right)=j$ where dis means the geodesic distance. Then

$$
\begin{equation*}
\left.G\left(\gamma, \gamma^{\prime} \mid z\right)=G(\gamma, \gamma \mid z) \prod_{j=1}^{m} \alpha \chi_{r_{j}}^{\left(\gamma_{j}-1\right.} \mid z\right), \tag{21}
\end{equation*}
$$

whence $G\left(\gamma, \gamma^{\prime} \mid z\right)$ is completely determined by $W_{\gamma}(z)$ and (12).
Remark. The equations (20) are generally an infinite system of algebraic equations. They do not determine the holomorphic functions $W_{r}(z)$ for $\operatorname{Im} z \neq 0$ even if we give the asymptotic behaviours by (19). But with the additional condition :
(22)

$$
\operatorname{Im}\left\{a_{r, r^{\prime}} \alpha\left(r_{r^{\prime}}^{r} \mid z\right)\right\} \cdot \operatorname{Im} z<0
$$

for $\operatorname{Im} z \neq 0, W_{r}(z)$ are completely determined by (19) and (20). We shall discuss this problem elsewhere (see [5]).

References

[1] K. Aomoto: Jour. Fac. Sci. Univ. of Tokyo, 31, 297-318 (1984).
[2] -: Proc. Japan Acad., 61A, 11-14 (1985).
[3] -: Algebraic equations for Green kernel on a free group (to appear in Proc. of Prospects of Math. Sci., World Sci.).
[4] --: Point spectrum on a quasi homogeneous tree (1988) (preprint).
[5] -: Self-adjointness and limit pointness for adjacency matrices on a tree. (1988) (preprint).
[6] P. Cartier: Symposia Mathematica, 9, 203-270 (1972).
[7] A. Figà-Talamanca: Harmonic analysis on free groups. Marcel Dekker (1983).
[8] T. Steger: Thesis, Washington Univ., St. Louis (1985).
[9] B. Mohar and W. Woess: A survey of infinite graphs (1987) (preprint).

