37. Algebraic Equations for Green Kernel on a Tree

Ву Казиніко Аомото

Department of Mathematics, Nagoya University

(Communicated by Kunihiko Kodaira, M. J. A., April 12, 1988)

Let Γ be a connected, locally finite tree with the set of vertices $V(\Gamma)$. Let A be a symmetric operator on $l^2(\Gamma)$, the space of square summable complex valued functions on $V(\Gamma)$:

(1)
$$Au(\tilde{r}) = \sum_{\langle r', r \rangle} a_{r, r'} u(\tilde{r}') + a_{r, r'} u(\tilde{r}),$$

for $u \in l^2(\Gamma)$, with $a_{r,r}$ and $a_{r,r'} \in \mathbb{R}$ such that $a_{r,r'} \neq 0$, where $\langle \Upsilon, \Upsilon' \rangle$ means that Υ and Υ' are adjacent to each other. We assume that A is self-adjoint with the domain $\mathcal{D}(A): \{u \in l^2(\Gamma) \mid \sum_{r \in V(\Gamma)} |u(\Upsilon)|^2 < \infty\}$. Then there exists uniquely the Green function $G(\Upsilon, \Upsilon' \mid Z)$ for $A, \Upsilon, \Upsilon' \in V(\Gamma)$, representing the resolvent $(z-A)^{-1}$ for $z \in C$, Im $z \neq 0$:

(2)
$$G(\gamma, \gamma' | z) = \int_{-\infty}^{+\infty} \frac{d\Theta(\gamma, \gamma' | \lambda)}{z - \lambda}$$

for the spectral kernel $\Theta(\tilde{r}, \tilde{r}' | \lambda)$ of A. We remark that for any $\tilde{r} \in V(\Gamma)$, $G(\tilde{r}, \tilde{r} | z)$ satisfies

(3) $\operatorname{Im} G(\tilde{\tau}, \tilde{\tau} | z) \cdot \operatorname{Im} z < 0.$

The purpose of this note is to extend a result obtained in [3] and [4] to an arbitrary tree. Algebraicity of Green functions was proved under various contexts. Here we want to give explicit formulae for them for an arbitrary self adjoint operator (see [3], [8] and [9]). First we want to prove

Lemma 1. For arbitrary adjacent vertices γ, γ' , suppose γ' and $\gamma_0 \in V(\Gamma)$ do not lie in the same connected component of $\Gamma - \{\gamma\}$. Then the quotient $G(\gamma_0, \gamma' | z)/G(\gamma_0, \gamma | z)$ does not depend on γ_0 .

Proof. We denote by $\Gamma_{r'}$ the connected subtree of Γ consisting of vertices γ'' lying in the connected component containing γ' of $\Gamma - \{\gamma\}$. We consider the following boundary value problem on the connected subtree $\Gamma_{r'} \cup \{\gamma\}$ containing $\Gamma_{r'}$ and γ : To find a solution $u \in l^2(\Gamma_{r'} \cup \{\gamma\})$ such that

(4)
$$Au(\gamma'') = zu(\gamma'') \quad \text{for } \gamma'' \in V(\Gamma_{\gamma'})$$

$$(5) u(\tilde{r}) = 1.$$

Then every $G(\gamma_0, \gamma''|z)/G(\gamma_0, \gamma|z)$ is a solution for this problem. Hence Lemma 1 follows from the following:

Lemma 2. There exists the unique solution $u(\tilde{r}')$ for the problem (4) and (5).

Proof. Suppose that there exist two solutions $u_1(\tilde{r}'')$ and $u_2(\tilde{r}'')$ on $V(\Gamma_{r'} \cup \{\tilde{r}\})$. Then the difference $v = u_1 - u_2$ also satisfies (4) and vanishes at \tilde{r} . We have to prove that v vanishes identically. We define a function \tilde{v} on $V(\Gamma)$ such that

(6)
$$\tilde{v}(\tilde{\gamma}'') = v(\tilde{\gamma}'') \quad \text{for } \tilde{\gamma}'' \in V(\Gamma_{\tau'}),$$

(7) $\tilde{v}(\gamma^{\prime\prime})=0$ otherwise. Then $\tilde{v} \in \mathcal{D}(A)$ and $(z-A)\tilde{v}(\gamma'') = -\delta_{\gamma,\gamma''}a_{\gamma,\gamma'}v(\gamma').$ (8)Since the Green kernel $G(\omega, \omega'|z)$ for Im $z \neq 0$ defines a bounded operator $\mathcal{G}(z)$ on $l^2(\Gamma)$ such that Image $\mathcal{G}(z) \subset \mathcal{D}(A)$ and $1 = (z - A) \cdot \mathcal{G}(z) \supset \mathcal{G}(z) \cdot (z - A),$ (9) we have for $\gamma'' \in V(\Gamma)$ (10) $\tilde{v}(\tilde{\gamma}^{\prime\prime}) = (z - A) \cdot \mathcal{G}(z) \tilde{v}(\tilde{\gamma}^{\prime\prime}) = \mathcal{G}(z) \cdot (z - A) \tilde{v}(\tilde{\gamma}^{\prime\prime}) = -a_{\gamma,\gamma'} \mathcal{G}(\tilde{\gamma}^{\prime\prime}, \tilde{\gamma} \mid z) v(\tilde{\gamma}^{\prime}).$ In particular for $\gamma'' = \gamma$ $0 = G(\gamma, \gamma \mid z) v(\gamma')$ (11)But $G(\tilde{r}, \tilde{r} | z)$ never vanishes, whence $v(\tilde{r}')$ must vanish. Then (8) shows \tilde{v}

But G(7,7|z) never vanishes, whence v(7') must vanish. Then (8) shows v becomes an eigenfunction for A with the eigenvalue z. But A being self-adjoint, there is no non-trivial such function. Hence \tilde{v} , a fortiori, v must vanish identically. The lemma follows.

We shall denote the quotient $G(\tilde{r}, \tilde{r}' | z) / G(\tilde{r}, \tilde{r} | z)$ by $\alpha(\tilde{r}' | z)$.

Now we want to prove a crucial

Lemma 3. For adjacent vertices $\gamma, \gamma' \in V(\Gamma)$,

(12)
$$\alpha(r_{r'}|z) = \frac{-W_r + \sqrt{W_r^2 + 4a_{r,r'}^2 W_r / W_{r'}}}{2a_{r,r'}}.$$

Proof. By the equations for the Green functions, we have (13) $zG(\gamma, \gamma | z) - \sum_{\langle \gamma'', \gamma \rangle, \gamma'' \neq \gamma'} a_{\gamma, \gamma''}G(\gamma, \gamma'' | z) - a_{\gamma, \gamma'}G(\gamma, \gamma' | z) - a_{\gamma, r}G(\gamma, \gamma | z) = 1.$ Dividing by $G(\gamma, \gamma | z)$, (14) $z - \sum_{\langle \gamma'', \gamma \rangle} a_{\gamma, \gamma''}\alpha(\gamma'' | z) - a_{\gamma, r} = W_{\gamma}(z).$

In the same way

(15)
$$zG(\tilde{\gamma}', \tilde{\gamma} | z) - \sum_{\langle \tau'', \tau \rangle, \tau'' \neq \tau'} a_{\tau, \tau''} G(\tilde{\gamma}', \tilde{\gamma}'' | z) - a_{\tau, \tau'} G(\tilde{\gamma}', \tilde{\gamma}' | z) - a_{\tau, \tau} G(\tilde{\gamma}', \tilde{\gamma} | z) = 0.$$

Dividing by $G(\tilde{\gamma}', \tilde{\gamma} | z)$ we have

(16)
$$z - \sum_{\langle r'', r \rangle, r'' \neq r'} a_{r, r''} \alpha_{(r'')}(z) - a_{r, r'} \frac{1}{\alpha_{(r')}(z)} - a_{r, r} = 0.$$

Subtraction of (14) from (16) gives

(17)
$$a_{r,r'}\left\{\frac{1}{\alpha(r'|z)} - \alpha(r'|z)\right\} = W_r(z).$$

By symmetry we have similarly

(18)
$$a_{r,r'}\left\{\frac{1}{\alpha(r'_r|z)} - \alpha(r'|z)\right\} = W_{r'}(z)$$

These two equations give immediately the formulae (12), seeing the asymptotic behaviours of $W_r(z)$, $W_{r'}(z)$ and $\alpha(t' | z)$:

(19)
$$W_r(z) \sim z, W_{r'}(z) \sim z \text{ and } \alpha(r_r|z) \sim \frac{a_{r,r'}}{z}.$$

The substitution of the formulae (12) into (14) yields the following equations:

(20) Theorem. For each vertex $\gamma \in V(\Gamma)$, $W_{\gamma} = z - a_{\gamma,\gamma} - \sum_{\langle \tau, \tau' \rangle} \frac{1}{2} \left(-W_{\gamma} + \sqrt{W_{\gamma}^2 + 4a_{\gamma,\tau'}^2 W_{\gamma}/W_{\gamma'}} \right)$.

125

For arbitrary $\gamma, \gamma' \in V(\Gamma)$, let $\gamma = \gamma_0, \gamma_1, \dots, \gamma_{m-1}, \gamma_m = \gamma'$ be vertices on the geodesic path $[\gamma, \gamma']$ joining γ and γ' such that dis $(\gamma, \gamma_j) = j$ where dis means the geodesic distance. Then

(21)
$$G(\gamma,\gamma'|z) = G(\gamma,\gamma|z) \prod_{j=1}^{m} \alpha(\gamma_{j}^{r_{j-1}}|z),$$

whence $G(\mathcal{I}, \mathcal{I}' | z)$ is completely determined by $W_{\mathcal{I}}(z)$ and (12).

Remark. The equations (20) are generally an infinite system of algebraic equations. They do not determine the holomorphic functions $W_{r}(z)$ for $\text{Im } z \neq 0$ even if we give the asymptotic behaviours by (19). But with the additional condition:

(22) $\operatorname{Im} \{a_{r,r'} \alpha(r'_{r'} | z)\} \cdot \operatorname{Im} z < 0,$

for Im $z \neq 0$, $W_{z}(z)$ are completely determined by (19) and (20). We shall discuss this problem elsewhere (see [5]).

References

- [1] K. Aomoto: Jour. Fac. Sci. Univ. of Tokyo, 31, 297-318 (1984).
- [2] ——: Proc. Japan Acad., 61A, 11–14 (1985).
- [3] ----: Algebraic equations for Green kernel on a free group (to appear in Proc. of Prospects of Math. Sci., World Sci.).
- [4] ——: Point spectrum on a quasi homogeneous tree (1988) (preprint).
 [5] ——: Self-adjointness and limit pointness for adjacency matrices on a tree. (1988) (preprint).
- [6] P. Cartier: Symposia Mathematica, 9, 203-270 (1972).
- [7] A. Figà-Talamanca: Harmonic analysis on free groups. Marcel Dekker (1983).
- [8] T. Steger: Thesis, Washington Univ., St. Louis (1985).
- [9] B. Mohar and W. Woess: A survey of infinite graphs (1987) (preprint).