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1. Introduction. Meir and Sharma [6] have studied the problem of
interpolation of matching a cubic spline at one intermediate point and defi-
cient cubic spline at two intermediate points between the successive mesh
points. For further results in this direction reference may be made to
Dikshit and Rana [5], Chatterjee and Dikshit [3] and Rana [7]. Following
Schoenberg [8] and de Boor [2], the problem of deficient cubic spline inter-
polation has been studied by Dikshit and Powar [4]. Corresponding to
foregoing Hermite interpolation problem we shall study in this paper a
Hermite Birkhoff interpolation by deficient cubic spline. Interesting studies
exhibiting sharp convergence properties for such spline interpolant when
feC?®or fe C* have also been made. Our result, in particular includes the
results proved in [7].

2. Existence and uniqueness. Let P: 0=x,<x,<---<z,=1 denote
a partition of [0, 1] with equidistant mesh points so that h=x,—2,_,=1/n.
Let P, be the set of all real algebraic polynomials of degree not greater
than 8. We define the deficient polynomial spline class S(3, P) as

S@,P)={s:se(C'0,1], se P, for each [z, ,, «,], i=1,2, - - -, n}.
Throughout g will denote a nondecreasing function on [0, 1] such that
@.1) g(x—i—h)——g(x):H:IZ dg, zel0,1—Ahl.

Setting
WA, o= o h—ordg;  r,p=0,1,2,3,
we observe that as a consequence of (2.1), we have
WA, )= @—2_)@,—2x)rdg, fori=1,2,---,n.

ZTi—1

Writing 6,=(x,+x,_,)/2 for all i, we propose the following :
Problem 2.1. Given a function fe C'[0,1]. Does there exist a unique
1-periodic spline s € S(8, P) which satisfies the interpolatory conditions:
@.2) 860 =16, i=1,2, - ,m,
2.3) [" v@-sapig=0, i=1,2,...,n?

Problem 2.2. For the function f of Problem 2.1, does there exist a
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unique l-periodic spline se S(3,P) which satisfies the interpolatory con-
ditions:
@.4) s(0) = 1(6,), i=1,2, .-, m,

2.5) J‘”t f/dg___J‘m S,dg’ 1=1,2,..-.,n?
Li—1 Ti—1

We shall answer the Problem 2.1 in the following :

Theorem 2.1. Let feC' [0,1]and g be a nondecreasing function such
that (2.1) holds. Then there exists a unique l-periodic spline se S(3, P)
satisfying (2.2), (2.3).

Remark 2.1. It is interesting to observe that conditions (2.3) and (2.5)
reduce to different interpolating conditions by suitable choice of g(x). Thus,
if g is a step function with a single jump of one at one point in each of the
mesh intervals then the conditions (2.3) and (2.5) reduce to the interpola-
tion at the points of jump.

Proof of Theorem 2.1 It is clear the s'(x) is quadratic, hence in the
interval [z,_;, 2,1, we may write
(2.6) s (@) =h(x—x,_)m,+h(x,—2x)m,_+@—2x,_)(®,—2)c,
where m,=s'(xz,) and ¢, is an appropriate constant which has to be deter-
mined. Using the interpolatory condition (2.2) we notice that

(27) 4f/(0i)=2(mi+mi—l)+ci
This determines ¢, and hence by integration, we obtain from (2.6),
(2.8) 6h’s(x)=3h(x—2x,_,)'m,; —3h(x,— x)*m,_,

—c,Qx+2,—3x,_)(x,—2x)* -6k,
Now using the interpolatory condition (2.3) in (2.8), we have
2.9) 3rA2, 0ym,—38hA0,2)m,_,—c,h(BA(, 2)+ A(0, 3))+6d,H=6 - fdg

=6F;—1
say. Since s is continuous at x,, we have
(2.10) 6hm;+he,,,=6(d,,,—d,)
Eliminating ¢,.,, d;, and d,,, between the equations (2.7)—-(2.10) we arrive at
the following system of egquations:
h h h
@1 @/ me [ e mdg+m, [ ate, wdg+me, [ a @ wdg|=Fr
where
a1 (@, W) =2"(4x—3h), a;(x, h)=h(k*+ 6x(h—2)), a;_ (2, h) = (h—x)*(h—4x)

and

F{=6(F, ,—F)|h+4(BAQ1,2)+ A0, 3)(f'(0:.) — f(0))—4H f'(0;.0)-

In order to prove Theorem 2.1, we shall show that the system of equa-
tions (2.11) has a unique set of solutions. Now, the excess of the coefficient

of m,; over the sum of the absolute values of the coefficients nf m,_, and
m,,, in (2.11) is greater than or equal to

h
W) [} (e, W=, DI, Mg
in which the integrand equals to
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2x(4x*—9hx +6h")=T,(x), say xel0,h/4]
2h° xzelh/4,3h/4]
2(h—x)(Ax*+ hx+h)=Ty(x), say «xecl[3h/4,h]
which turns out to be >0 for z ¢ [0, z].
Thus, the coefficient matrix A of the system of equations (2.11) is diag-

onally dominant and hence invertible. This completes the proof of Theo-
rem 2.1.

In order to answer problem 2.2 we first use the interpolatory conditions
(2.5) and (2.4) in (2.6) and (2.8) respectively to get

2.12) AL, 0y, + A0, D, + AL, De, =j’” fdg=F
say, and -
(2.13) 247(6,)=3h(m;,—m,_,) —2hc,+24d,.

Now using (2.12)—(2.13) in (2.10), we get
[84(1,1)—2A4(0, 1)Im,_,+[1841,1)—2A(1,0)—2A4(0, 1)Im,
+[8A(1, D—-2AQ, O)lm,,,=2FF*
where F}*=12A(1, DA {f(0;,1)— f(0)} — F ..+ F?).

Now following closely the foregoing proof of Theorem 2.1 we prove
the following :

Theorem 2.2. Let g be a nondecreasing function such that (2.1) holds
and moreover g(x,_)=9(@®,_,+2h/9), g(x,—h/3)=9(x,),1=1,2, ---,n. Then
for any f e C'[0,1], there exists a unique l-periodic spline s € S(8, P) satis-
fying (2.4), (2.5).

3. Error bounds. In this section, we shall obtain bounds for the func-
tion e=s— f where s is the deficient spline interpolant of f in S(3, P). Given
any function g we write for convenience g(x,)=g; and w(g, h) for the modu-
lus of continuity of g. Let us write the equations (2.11) as
3.1) AM =F*,
where A is the coefficient matrix and M and F* are single column matrices
(m,) and (F'¥) respectively. It may be observed that (cf. [1], p. 21) the
row-max norm :

3.2) A< R(R),

where R(h)=max {R;*,1/2H, R;'} with R,=(1/h%) r T.(x)dg for i=1, 2.
[

From (8.1), we obtain the system of equations for e] as follows
(3.3 Ae)=FFH—A()=WU),
say. Now considering fe C*[0,1] and using the results that f(x)=/f;+
@—2)) [+ @— ) f} |2+ @2, f7 [6+(@—2)' 7(8) 24 and f'(@)=f)+
@—a)f7+@—x)f |2+ @—2x,) " (a;)/6, Where 8, and «, lie in appro-
priate intervals, we obtain the right hand side of (3.3) as
12U,/ h*=3[A4, 0) f“(2;.) — A0, 4) f“(2,)]
+I8A(1, 2)+ A0, )I(f () + U 0)—H f O (1)
+2[3A(0,2)—6A(1, 2)—2A(0, 3)] /(5.
—2[8A(2,0)+6A(1, 2)+2A(0, 3)—2H] f (9, )-
where y, € [®,_,, 2,] for y=2,7,6. Rearranging the terms suitably we get
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12U,/ *=3A4, O f9(2:,) — fP@II+H—2AGB, )L /D06,,)— fO)]

+(@2H—-12A(1, 0)+18A(2, 0)—8A(3, 0 f () — f™(2)]
+BAQ,2)+ A0, 3)—HIf () — fU0;.)]
+BAQ, 2)+ A, Nf () — fH(6,:,)].

Thus,

3.4) U< BH/DRw(f, h)

Now following the standard arguments based on the diagonally dominant

property and using (3.2), (3.4) in (3.3), we have

(3.5) e |<BH/HRR(Mw(f®, k)

where R(h) is given by (3.2).

Now combining (2.7) with (2.6), we replace s’(z) by ¢/(x) and m, by ]
in (2.6) and adjust suitably the additional terms by using the result of
Taylor’s theorem to see that

(3.6) |le,(95)“<2“(61)'[[—|—(h2/2)w(f~/, )
Now using the estimate (3.5) in (3.6), we get
@D le’@) | <R 2Tw(", ) +3HRR(Ww(®, B)]

Thus, we have proved the following :

Theorem 3.1. Suppose s(x) is the deficient cubic spline of Theorem
2.1 interpolating a function f(x) and f(x) e C*0,1]. Then for r=0,1
3.8 [s—NC@IK<® 7 /2w (", ) +3HRR(Mw(f¥, b)].

(3.7) proves Theorem 3.1 for r=1. The other inequality of Theorem 3.1
follows by the standard reasoning used elsewhere.

Starting with the system of equations (2.14) and following closely the
foregoing proof of Theorem 3.1, we can also prove a similar result corre-
sponding to Theorem 2.2 in the following :

Theorem 3.2. Suppose s(x) is the deficient cubic spline of Theorem
2.2 interpolating a function f(x) and f(x) e C[0,1]. Then for j=0,1
3.9 [(s—NV@ <P KMR)z(f", h)
where K(h) is some positive function of h.
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